CLASS : XIth
DATE :
Solutions
SUBJECT : CHEMISTRY
DPP No. : 3

Topic :-SOLUTIONS

1
(c)

Molality $\frac{\text { Moles of solute }}{\mathrm{kg} \text { of solvent }}=\frac{5.2 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}}{\mathrm{kg}(=100 \mathrm{~g}) \mathrm{H}_{2} \mathrm{O}}$
$n_{1}\left(\mathrm{CH}_{3} \mathrm{OH}\right)=5.2$

$$
n_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{1000}{18}=55.56
$$

$\therefore n_{1}+n_{2}=5.20+55.56=60.76 \mathrm{~mol}$
$\therefore X_{C H_{3} O H}=\frac{n_{1}}{n_{1}+n_{2}}=\frac{5.2}{60.76}=0.086$
(c)

Suppose the equal mass of methane and oxygen $=w=1 \mathrm{~g}$
Mole fraction of oxygen $=\frac{w / 32}{\frac{w}{32}+w / 16}$

$$
=\frac{\frac{1}{32}}{\frac{3}{32}}=\frac{1}{3}
$$

Let the total pressure $=p$
Pressure exerted by oxygen (partial pressure)

$$
=X_{o_{2}} \times p_{\text {total }}=p \times \frac{1}{3}
$$

3
(d)

In Ist case,
When two liquids X and Y are mixed in the molar ratio 1:1.
Moles of $X=1$
Moles of $Y=1$
Mole fraction of $X\left(\varkappa_{x}\right)=\frac{1}{2}$
Mole fraction of $Y\left(\varkappa_{Y}\right)=\frac{1}{2}$
We know that

$$
\begin{align*}
& \mathrm{p}=p_{X}^{\circ} \mathcal{\varkappa}_{x}+p_{Y}^{\circ} \mathcal{\varkappa}_{Y} \quad(p=\text { total pressure of mixture }) \\
& 400=\frac{1}{2} p_{X}^{\circ}+\frac{1}{2} p_{Y}^{\circ} \\
& 400 \times 2=p_{X}^{\circ}+p_{Y}^{\circ} \quad \ldots \text { (i) } \tag{i}
\end{align*}
$$

For case II ${ }^{\text {nd }}$,
When liquids are mixed in the molar ratio of 1:2,
Mole fraction of $X=1$

Mole fraction of $Y=2$
Mole fraction of $X\left(\varkappa_{x}\right)=\frac{1}{3}$
Mole fraction of $Y\left(\varkappa_{y}\right)=\frac{2}{3}$

$$
\begin{gather*}
P=p_{X}^{\circ} \mathcal{U}_{X}+p_{Y}^{\circ} \mathcal{\varkappa}_{Y} \\
350=\frac{1}{3} p_{X_{3}^{\circ}}^{2} p_{Y}^{\circ} \\
350 \times 3=p_{X}^{\circ}+2 p_{Y}^{\circ} \quad . \tag{ii}
\end{gather*}
$$

From Eqs (i) and (ii), we get

$$
p_{X}^{\circ}=550 \mathrm{~mm}
$$

$$
p_{Y}^{\circ}=250 \mathrm{~mm}
$$

(c)
$\mathrm{Na}_{2} \mathrm{SO}_{4}=2 \mathrm{Na}^{+}+\mathrm{SO}_{4}^{2-}$

$1-\alpha$	0	0
$1-\alpha$	α	

Where α is degree of dissociation
$\therefore \quad i=1-\alpha+2 \alpha+\alpha=1+2 \alpha$
(c)

For ideal solution,
$\Delta H_{\text {solution }}=\Delta H_{1}+\Delta H_{2}+\Delta H_{3}$
(d)

Azeotropic mixture of HCl and water has 20.24% of HCl . It boils at $108.5^{\circ} \mathrm{C}$ under a pressure of one atmosphere.
(b)
$p_{M}=p_{A}^{\prime}+p_{B}^{\prime}$

$$
\begin{array}{ll}
=p_{A} \cdot x_{A}+p_{B} \cdot x_{B} & \left(\because p_{A}^{\prime}=p_{A} \cdot x_{A}\right) \\
=p_{A} \cdot x_{A}+p_{B}\left(1-x_{A}\right) & \left(\because x_{A}+x_{B}=1\right) \\
=p_{B}+x_{A}\left(p_{A}-p_{B}\right) &
\end{array}
$$

(d)

Molarity

$$
\begin{aligned}
& =\frac{\text { weight } \% \text { of solute } \times \text { density of the solution }}{\times 10}
\end{aligned}
$$

(a)
$\pi=$ CRT
Hence,

$$
\begin{aligned}
\mathrm{C} & =0.2 \mathrm{M} \\
\mathrm{R} & =0.082 \mathrm{Latm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
\mathrm{~T} & =27+273=300 \mathrm{~K} \\
\pi & =0.2 \times 0.082 \times 300 \mathrm{~K} \\
& =4.92 \mathrm{~atm} .
\end{aligned}
$$

(b)

Let the volume of 0.4 M HCl is V_{1} and that of 0.9 M HCl is V_{2}.
We know that,

$$
\begin{gathered}
N V=\quad N_{1} V_{1} \quad+\quad N_{2} V_{2} \\
(\text { Mixture }) \quad(\text { for } 0.4 \mathrm{M} \mathrm{HCl}) \quad(\text { for } 0.9 \mathrm{M} \mathrm{HCl}) \\
0.7\left(V_{1}+V_{2}\right)=0.4 \times V_{1}+0.9 \times V_{2} \\
{[\because 1 \mathrm{~m} \mathrm{HCl}=1 \mathrm{~N} \mathrm{HCl}]} \\
0.7 V_{1}+0.7 V_{2}=0.4 V_{1}+0.9 V_{2} \\
0.7 V_{1}+0.4 V_{1}=0.9 V_{2}+0.7 V_{2} \\
0.3 V_{1}=0.2 V_{2} \\
\frac{V_{1}}{V_{2}}=\frac{0.2}{0.3}=\frac{2}{3}
\end{gathered}
$$

(b)
(π) glucose $=(\pi)$ unknown compound
$0.05=\frac{3}{M}$
$M=\frac{3}{0.05}=60$
$n=\frac{60}{30}=2$ (e.f.m. for $\mathrm{CH}_{2} \mathrm{O}=30$)
so, molecular formula $=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
(d)

By Ostwald-walker dynamic method, the relative lowering of vapour pressure, lowering of vapour pressure and vapour pressure of the solvent, all can be measured.
In this method, the apparatus used, contains two bulbs: bulb A contains solution and bulb B contains solvent. The loss of weight in bulb B gives the lowering vapour pressure and total loss of weight in both the tubes gives the vapour pressure of the solvent and Relative lowering of vapour pressure
$=\frac{\text { lowering of vapour pressure }}{\text { vapour pressure of solvent }}$
(a)
$K=9=\frac{a \times 10}{(0.1-a) \times 10}$
Where a is the molarity of organic compound in CCl_{4} at equilibrium
$\therefore \quad a=0.09 \mathrm{M}$
Thus, molarity of organic compound left in water

$$
\begin{aligned}
& =0.1-0.09 \\
& =0.01 \mathrm{M}
\end{aligned}
$$

(d)
$M_{2}=\frac{K_{f} \times w_{2} \times 1000}{\Delta T_{f} \times w_{1}}$
or $\quad M_{2}=\frac{1.86 \times 1.8 \times 1000}{0.465 \times 40}=180$
$n=\frac{180}{\text { emp.formula mass }}=\frac{180}{30}=6$
Molecular formula of the compound is $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$.
(a)

According to Raoult's law in a solution of a non-volatile solute, the the relative lowering in vapour pressure is always equal to the mole fraction of the solute.

$$
\frac{p-p_{s}}{p}=X_{A}=\frac{N_{A}}{N_{A}+N_{B}}
$$

(c)
$P_{A}^{\prime}=P_{A}^{0} \cdot X_{A}+P_{M} \cdot Y_{A}$
$P_{A}^{\prime}=P_{B}^{0} \cdot X_{B}=P_{M} \cdot Y_{B}$
$\therefore \frac{P_{A}^{0}}{P_{B}^{0}} \cdot \frac{X_{A}}{X_{B}}=\frac{Y_{A}}{Y_{B}}$
$\because \frac{P_{A}^{0}}{P_{B}^{0}}>1 \quad \therefore \frac{X_{A}}{X_{B}}<\frac{Y_{A}}{Y_{B}}$
(a)

Normality of $2.3 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}=M \times$ basicity $=2.3 \times 2=4.6 \mathrm{~N}$
(d)
$i=1+\alpha$

$$
\begin{aligned}
& =\frac{\text { cal.mol.weight }}{\exp \cdot \mathrm{mol} \cdot \mathrm{wt}}=\frac{58.5}{30}=1.95 \\
& \therefore 1+\alpha=1.95 \\
& \alpha=0.95
\end{aligned}
$$

(b)

Molarity of $\mathrm{H}_{2} \mathrm{SO}_{4}=5 \mathrm{M}$
Normality of $\mathrm{H}_{2} \mathrm{SO}_{4}=2 \times 5=10 \mathrm{~N}$

$$
N_{1} V_{1}=N_{2} V_{2}
$$

$10 \times 1=N_{2} \times 10$ or $N_{2}=1 \mathrm{~N}$
(a)

$$
K=\frac{[\text { Succinic acid }] \text { in water }}{[\text { Succinic acid }] \text { in ether }}=\frac{\frac{1.843}{M \times 100}}{\frac{0.127}{M \times 50}}
$$

$$
=7.26
$$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	C	C	D	C	B	C	D	D	A	B	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	B	D	A	D	A	C	A	D	B	A	

