

Molality (m) =
$$\frac{M}{1000d - MM_1} \times 100$$

M = Molarity
 M_1 = Molecular mass
d = density
= $\frac{2.05}{(1000 \times 1.02) - (2.05 \times 60)} \times 100$
=2.28 mol kg⁻¹

9

(d)

According to question, $w_A = xg$, $m_A = 18$, $x_A = 1 - 0.6 = 0.4$ $w_B = 69g$, $m_B = 46$, $X_B = 0.4$ We know that, $x_A = \frac{n_A}{2}$

$$X_A = \frac{n_A + n_B}{n_A + n_B}$$

or
$$0.4 = \frac{\frac{w_A/m_A}{\frac{w_A}{m_A} + \frac{69}{46}}}{\frac{18}{18} + \frac{3}{2}}$$
$$0.4 \times \left(\frac{2x + 54}{36}\right) = \frac{x}{18}$$
or
$$2x + 54 = 5x$$
or
$$3x = 54, x = 18 \text{ g}$$
(a)
$$\Delta H_{\text{solution}} = \Delta H_{\text{hydration}} + \Delta H_{\text{lattice energy}}$$

$$\Delta H_{\text{solution}} = \Delta H_{\text{hydration}} + \Delta H_{\text{lattice energy}}$$

$$\Delta H_{\text{h}} = -\text{ve}$$

$$\Delta H_{\text{l}} = +\text{ve}$$

(b)

(b)

(d)

Molarity Molarity of a solution is the number of moles of the solute per litre of solution. Unit of molarity is mol/L.

$$M = \frac{w}{m \times V(L)}$$

$$0.25 = \frac{w}{106 \times 0.25}$$

$$\therefore w = 6.625 \text{ g}$$

13

 $K_4[Fe(CN)_6]$ furnishes maximum ions (*ie*, 5) thus, it has maximum value of van't Hoff factor

14 **(d)**

For ternary electrolyte; $P_1 = CST = 0.05 \times 3 \times S \times T$; For B; $2P = 0.1 \times S \times T$; $\therefore P_1 = 3P$ (a)

15

$$\Delta T_f = \text{molality} \times K_f$$

$$= \frac{68.5 \times 1000}{342 \times 1000} \times 1.86$$

$$= 0.372$$

$$\therefore T_f = 0 - 0.372 = -0.372 \text{ C}$$
16
(a)
According to Raoult's law
$$p = p_A^* X_A + p_B^* X_B$$

$$= 290 = 200 \times 0.4 + p_B^2 \times 0.6$$

$$p_B^* = 350$$
17
(c)
Molarity, $M = \frac{W_2 \times 1000}{1000} = 19.6 \text{ g}$

$$H_2SO_4 + 2H_2O = 2H_3O^+ + SO_4^-$$
But according to equation 1 mole of H_2SO_4 gives 2 mole of $[H_2O^+]$ ions. So, the amount of H_2SO_4 to prepare 200 mL solution having the 1 M concentration OH_3O^+ ions is $19.6/2 = 9.8 \text{ g}$.
18
(a)
$$N_1V_1 = N_2V_2$$

$$0.164 \text{ M NaOH} \approx 0.164 \text{ N NOH}$$

$$N_1 = ?, V_1 = 25 \text{ mL}, N_2 = 0.164, V_2 = 32.63 \text{ mL}$$

$$N_1V_1 = N_2V_2$$
or
$$N_1 = \frac{N_2V_2}{V_1}$$

$$= 0.214 \text{ M } H_2SO_4$$

$$0.214 \text{ N } H_2SO_4$$

$$0.214 \text{ N } H_2SO_4$$
(c)
$$\Delta T = K_f \times m,$$

$$\therefore 10 = 1.86 \times m;$$
or
$$m = 5.376$$
20
(a)
A gas is more soluble if (i) More are forces of attractions among molecules of gases, ii) More being the tendency of ionization in a solvent and

iii) More is H-bonding.

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	С	Α	C	В	А	D	C	С	D	A
Q.	11	12	13	14	15	16	17	18	19	20
A.	В	В	D	D	А	A	C	А	C	A

