

$$= \left(\frac{3}{10} - \frac{2}{9}\right) \times 100 = \frac{70}{9} \cong 8$$

$$\therefore \ \% \text{ change} = \frac{8}{30} \times 100 = 26\%$$

(d)

$$C_1$$

8

 $K = \frac{c_1}{c_2}$

(b)

9 (a)

Osmosis is a bilateral movement of solvent particles through semipermeable membrane and only net flow (more from dilute solution to concentrate solution) is noticed.

10 **(d)**

These are conditions for the validity of distribution law.

11

 $i = \frac{\text{Normal mol.wt.}}{\text{Exp. mol.wt.}}$

12 **(d)**

Aqueous solution of any substance (non-volatile) freezes below 0°C because the vapour pressure of the solution becomes lower than that of pure solvent.

13 (c) $\frac{\pi_1}{\pi_2} = \frac{T_1}{T_2};$ $\therefore \frac{\pi_1}{2} = \frac{546}{273}; \quad \therefore \pi_1 = 4 \text{ atm.}$ 14 (a) $\Delta T_f \text{ depends upon } K_f \text{ of solvent.}$ 15 (c) Given, Weight of non-volatile solute, w = 25 g

Weight of solvent, W=100 g Lowering of vapour pressure,

 $p^{\circ} - p_s = 0.225 \text{ mm}$

Vapour pressure of pure solvent,

 $p^{\circ} = 17.5 \text{ mm}$

Molecular weight of solvent (H_2O), M = 18 g

Molecular weight of solute, *m*=?

According to Raoult's law

$$\frac{p^{\circ} - p_s}{p^{\circ}} = \frac{w \times M}{m \times W}$$

$$\frac{0.225}{17.5} = \frac{25 \times 18}{m \times 100}$$

$$m = \frac{25 \times 18 \times 17.5}{22.5}$$

$$= 350 \ g$$

16 (d) Let *x* mL of HCl are taken , then $N_1V_1 = N_2V_2$ $\frac{1}{2} \times x = \frac{1}{10} \times 500$ x = 100 mLHence, water needed to add = 500-100 = 400mL 17 (a) $\frac{p^0 - p_s}{n^0} = \text{molality} \times (1 - \alpha + x\alpha + y\alpha)$ The value of $p^0 - p_s$ is maximum for BaCl₂ 18 (d) Ideal solution obeys Raoult's law at every range of concentration. So, the second component must follow. Raoult's law in the range. When x_2 is $0 \le x_2 \le 1$. 19 (c) Mole fraction of H₂O = $\frac{\frac{80}{18}}{\frac{80}{18} + \frac{20}{24}} = \frac{68}{77}$ 20 (c) Molality = $\frac{\text{mole of solute}}{\text{wt. of water in } \text{kg}} = \frac{18 \times 1000}{180 \times 500} = 0.2 \text{ m}$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	Α	D	В	A	A	A	C	D	A	D
Q.	11	12	13	14	15	16	17	18	19	20
A.	В	D	C	A	C	D	A	D	C	C

