CLASS : XIth
DATE :
Solutions
SUBJECT : CHEMISTRY DPP No. : 10

Topic :-SOLUTIONS

1
(a)
$\pi V=n S T$ for glucose and blood; If isotonic $\pi_{\text {glucose }}=\pi_{\text {blood }}$;
Thus, $7.65 \times V=\frac{w}{180} \times 0.0821 \times 310$
$\therefore \frac{w}{V}=54.1 \mathrm{~g} /$ litre or 5.41%
(d)

Van't Hoff factor for association(i)=1- $\alpha+\frac{\alpha}{n}$
Given $\alpha=1$ and $n=3$.

3
(b)

Vapour pressure is characteristic property of a solvent at a temperature.
(a)
$\therefore \quad \Delta T=\frac{1000 \times K_{f}^{\prime} \times w}{W \cdot m}$

$$
9.3=\frac{1000 \times 1.86 \times 50}{62 \times W}
$$

$\therefore \quad W=161.29$
\therefore Ice separated $=200-161.29=38.71 \mathrm{~g}$.
(a)

The order of osmotic pressure of $\mathrm{BaCl}_{2}, \mathrm{NaCl}$ and sucrose is

$$
\mathrm{BaCl}_{2}>\mathrm{NaCl}>\text { sucrose }
$$

Since, BaCl_{2} gives maximum ion (3 ions) in the solution.
(c)

Mole fraction of $A=\frac{\text { moles of } A}{\text { total moles }}$
Given,
moles of $\mathrm{Ar}=1$, moles of $\mathrm{CO}_{2}=2$,
moles of $\mathrm{O}_{2}=3$, moles of $\mathrm{N}_{2}=4$,
moles of O_{2} removed =1
Mole fraction of O_{2} at initial stage

$$
=\frac{3}{1+2+3+4} \times 100=\frac{3}{10} \times 100=30
$$

Mole fraction of O_{2} at final stage

$$
=\left(\frac{3}{10}-\frac{2}{1+2+2+4}\right) \times 100
$$

$$
\begin{aligned}
& =\left(\frac{3}{10}-\frac{2}{9}\right) \times 100=\frac{70}{9} \cong 8 \\
\therefore & \% \text { change }=\frac{8}{30} \times 100=26 \%
\end{aligned}
$$

8
(d)
$K=\frac{c_{1}}{c_{2}}$
(a)
(d)
(b)
(d)
(c)
$\frac{\pi_{1}}{\pi_{2}}=\frac{T_{1}}{T_{2}}$;
(a)
(c)

Osmosis is a bilateral movement of solvent particles through semipermeable membrane and only net flow (more from dilute solution to concentrate solution) is noticed.

These are conditions for the validity of distribution law.
$i=\frac{\text { Normal mol.wt. }}{\text { Exp. mol.wt. }}$

Aqueous solution of any substance (non-volatile) freezes below $0^{\circ} \mathrm{C}$ because the vapour pressure of the solution becomes lower than that of pure solvent.
$\therefore \frac{\pi_{1}}{2}=\frac{546}{273} ; \quad \therefore \pi_{1}=4 \mathrm{~atm}$.
ΔT_{f} depends upon K_{f} of solvent.

Given,
Weight of non-volatile solute,

$$
\mathrm{w}=25 \mathrm{~g}
$$

Weight of solvent, $\mathrm{W}=100 \mathrm{~g}$
Lowering of vapour pressure,

$$
p^{\circ}-p_{s}=0.225 \mathrm{~mm}
$$

Vapour pressure of pure solvent,

$$
p^{\circ}=17.5 \mathrm{~mm}
$$

Molecular weight of solvent $\left(\mathrm{H}_{2} \mathrm{O}\right), M=18 \mathrm{~g}$
Molecular weight of solute, $m=$?
According to Raoult's law

$$
\begin{aligned}
\frac{p^{\circ}-p_{s}}{p^{\circ}} & =\frac{w \times M}{m \times W} \\
\frac{0.225}{17.5} & =\frac{25 \times 18}{m \times 100} \\
m & =\frac{25 \times 18 \times 17.5}{22.5} \\
& =350 \mathrm{~g}
\end{aligned}
$$

19
(d)

Let $x \mathrm{~mL}$ of HCl are taken, then

$$
\begin{aligned}
N_{1} V_{1} & =N_{2} V_{2} \\
\frac{1}{2} \times x & =\frac{1}{10} \times 500 \\
x & =100 \mathrm{~mL}
\end{aligned}
$$

Hence, water needed to add

$$
=500-100=400 \mathrm{~mL}
$$

(a)
$\frac{p^{0}-p_{s}}{p^{0}}=$ molality $\times(1-\alpha+x \alpha+y \alpha)$
The value of $p^{0}-p_{s}$ is maximum for BaCl_{2}
(d)

Ideal solution obeys Raoult's law at every range of concentration. So, the second component must follow.
Raoult's law in the range. When x_{2} is $0 \leq x_{2} \leq 1$.
(c)

Mole fraction of $\mathrm{H}_{2} \mathrm{O}=\frac{\frac{80}{18}}{\frac{80}{18}+\frac{20}{24}}=\frac{68}{77}$
(c)

Molality $=\frac{\text { mole of solute }}{\text { wt. of water in kg }}=\frac{18 \times 1000}{180 \times 500}=0.2 \mathrm{~m}$

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	A	D	B	A	A	A	C	D	A	D			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	B	D	C	A	C	D	A	D	C	C			

