Class : XIIth Date : DAILY PRACTICE PROBLEMS

Solutions

Subject : PHYSICS DPP No. : 8

Topic :- Semiconductor electronics: materials, devies and simple circuits

1 (c)

2

If lattice constant of semiconductor is decreased, then E_c and E_v decrease, but E_g increases. (c)

We know that resistance of conductor is directly proportional to temperature (*ie*, $R \propto \Delta t$), while resistance of semiconductor is inversely proportional to temperature (*ie*, $R \propto \frac{1}{\Lambda t}$).

Therefore, it is clear that resistance of conductor decreases with decrease in temperature of *vice-versa*, while in case of semiconductor, resistance increase with decrease in temperature of *vice-versa*.

Since, copper is pure conductor and germanium is a semiconductor hence, due to decrease in temperature, resistance of conductor decreases while that of semiconductor increases.

(a)

(a)

(b)

Density
$$\rho = \frac{nA}{N(a)^3}$$

where $n = 2$ for bcc structure, $A = 39 \times 10^{-3} kg$
 $N = 6.02 \times 10^{23}$, $a = \frac{2}{\sqrt{3}} d = \frac{2}{\sqrt{3}} \times (4.525 \times 10^{-10})m$

[d = nearest neighbor distance = distance between centres of two neighbouring atoms= $\frac{\sqrt{3}}{2}a]$

On putting the values we get $\rho = 907$

4

In *p*-type semiconductor holes are majority carriers and electrons are minority carriers.

5

It is the symbol of 'NOR' gate

6 **(c)**

For hexagonal crystal structure, $a = b \neq c$ and $\alpha = \beta = 90^{\circ}$ but $\gamma = 120^{\circ}$.

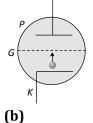
8 **(d)**

Arsenic has five valence electrons, so it a donor impurity. Hence *X* becomes *N*-type semiconductor. Indium has only three outer electrons, so it is an acceptor impurity. Hence *Y* becomes *P*-type semiconductor. Also *N* (*i.e.,X*) is connected to positive terminal of battery and P(i.e.,Y) is connected to negative terminal of battery so *PN*-junction is reverse

biased

9 **(b)**

The difference in the variation of resistance with temperature in a metal and semiconductor is caused due to the difference in the variation of the number of charge carriers with temperature.


10 **(a)**

The potential of *P*-side is more negative that of *N*-side, hence diode is in reverse biasing. In reverse biasing it acts as open circuit, hence no current flows

11

(b)

When grid is given positive potential more electrons will cross the grid to reach the positive plate *P*. Hence current increases

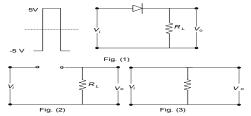
13

This is operational or OP-inverting amplifier

$$A = \frac{V_0}{V_i} = -\frac{R_f}{R_i}$$

Given $V_i = 1V$, $R_f = 10k\Omega$, $R_i = 1k\Omega$
 $\therefore V_0 = -V_i \frac{R_f}{R_i} = -1 \times \frac{10}{1} \Rightarrow V_0 = -10V$

 V_0 is negative because V_{input} is +1V (positive)


 $V_i < C$

14

(d) For

the diode is reverse biased and hence offer infinite resistance, so circuit would be like as shown in Fig. (2) and $V_o = 0$.

For $V_i > 0$, the diode is forward biased and circuit would be as shown in Fig. (3) and $V_o = V_i$

Hence, the optical (d) is correct.

15

(b)

Maximum load current $I_m = \frac{V_m}{r_f + R_L} = \frac{50\sqrt{2}V}{(20 + 980)\Omega}$ = 70.7 mA \therefore Mean load current. $I_{DC} = \frac{2I_m}{\pi} = \frac{2 \times 70.7}{\pi} = 45$ mA

16 **(a)**

The input of OR gate is *A* and $\overline{(A \cdot B)}$. Hence $Y = A + \overline{(A \cdot B)}$.

17 **(d)**

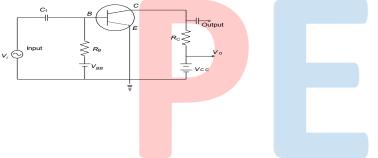
The given truth table follows a NAND gate whose output is 1 only if at least one of its input is zero. Its Boolean expression is

 $Y = \overline{A \cdot B}$ So that $\overline{1 \cdot 1} = \overline{1} = 0$ $\overline{1 \cdot 0} = \overline{0} = 1$ $\overline{0 \cdot 1} = \overline{0} = 1$ $\overline{0 \cdot 0} = \overline{0} = 1$

18

Tourmaline is the dichroic crystal

19 **(d)**


(d)

(d)

Ionic bond is a type of chemical bond based on electrostatic forces between two oppositely charged ions. Bond between NaCl, CsCl and LiF are ionic, while H_2O forms a covalent bond.

20

In CE amplifier, the input signal is applied across base-emitter junction as shown in the figure below.

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	C	C	А	А	В	С	А	D	В	A
Q.	11	12	13	14	15	16	17	18	19	20
A.	В	С	В	D	В	А	D	D	D	D

