Class : XIIth Date :

Solutions

Subject : PHYSICS DPP No. : 7

Topic :- semiconductor electronics: materials, devies and simple circuits

1 (c) The resistance of semiconductor decreases with the increase in temperature 2 (d) $\lambda = \frac{hc}{E} = \frac{6.62 \times 10^{-34} \times 3 \times 10^8}{(1.14 \times 1.6 \times 10^{-19})} = 10,888\text{\AA}$ 3 (c) Voltage gain $= \frac{\text{Output voltage}}{\text{Input voltage}}$ $\Rightarrow V_{out} = V_{in} \times \text{Voltage gain}$ $\Rightarrow V_{out} = V_{in} \times \text{Current gain} \times \text{Resistance gain}$ $= V_{in} \times \beta \times \frac{R_L}{R_{BF}} = 10^{-3} \times 100 \times \frac{10}{1} = 1V$ 4 (d) $r_p = \frac{\Delta V_p}{\Delta i_p} = \frac{150 - 100}{(12 - 7.5) \times 10^{-3}} = \frac{50}{4.5} \times 10^3 = 11.1 k\Omega$ 5 (c) $\alpha = \frac{I_c}{I_e} < 1$ or $I_c < I_e$. 6 (b) The input of OR gate is Y = A + B7 (d) In a forward biased *p*-*n* junction, the applied potential is opposite to the junction barrier potential V_B . The consequence of this is the effective barrier potential reduces. Hence, the graph (d) is correctly shown. 8 (d) Number density of atoms in silicon specimen $= 5 \times 10^{28}$ atoms/m² $= 5 \times 10^{7}$ silicon atoms, so total number of indium atoms doped per atoms, so total number of indium atoms doped per cm³ of silicon will be $n = 5 \times 10^{22} / 5 \times 10^7 = 10^{15}$ atoms cm⁻³. 9 (c)

For 'NAND' gate (option c), output $= \overline{0.1} = \overline{0} = 1$

10

(c)

(c)

(d)

(c)

The junction diode *I* will provide output when forward biased. It will be so during negative half cycle of input AC voltage applied.

11

If inputs are *A* and *B* then output for NAND gate is $Y = \overline{AB}$ \Rightarrow If A = B = 1, $Y = \overline{1.1} = \overline{1} = 0$

12

Equivalent circuit can be redrawn as follows

$$i = \frac{10}{2} = 5 mA = i_2$$

$$i_1 = 0$$

$$i_2$$

$$i_3$$

14

15

Because As is pentavalent impurity

(c)
$$V_{dc} = V_{ac} = \frac{2V_0}{\pi} = \frac{2 \times 6.28}{3.14} = 4V$$

 V_k = knee voltage = 0.3 V

(c)

$$E_g = hv = \frac{hc}{\lambda} = \left(\frac{6.63 \times 10^{-34} \times 3 \times 10^8}{2480 \times 10^{-9} \times 1.6 \times 10^{-19}}\right) = 0.5 \text{ eV}$$

(b)

16

: Resistance $=\frac{\Delta V}{\Delta i} = \frac{(2.3 - 0.3)}{(10 - 0) \times 10^{-3}} = 200\Omega = 0.2k\Omega$ 17 **(b)**

> In reverse biasing, the applied voltage V on the n-side is positive and is negative on the pside. The applied bias V and the barrier potential V_B are in the same direction making the effective junction potential $V + V_B$. As a result, the junction width will increase. The higher junction potential would restrict the flow of majority carriers to a much greater extent. However, such a field will favour the flow of minority carriers. So, reverse bias current will be due to the minority carriers only.

18

(c)

The current through the battery is

$$I = \frac{10V}{5\Omega + 5\Omega} = \frac{10V}{10\Omega} = 1A$$

20

(b) In common emitter amplifier Voltage gain = current gain × resistance gain Or $A_V = \beta \times \frac{R_o}{R_i}$ Or $\frac{V_o}{V_i} = \beta \frac{R_o}{R_i}$ Or $\frac{3}{0.01} = 100 \times \frac{R_o}{1 \times 10^3}$ Or $R_o = \frac{3}{0.01} = 3 \text{ k}\Omega$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	С	D	C	D	C	В	D	D	С	С
Q.	11	12	13	14	15	16	17	18	19	20
A.	С	D	C	C	C	В	В	С	С	В

