Class: XIIth
Date :
Solutions
Subject : PHYSICS
DPP No. : 5

Topic :- SEmiconductor electronics: materials,Devies and simple circuits

1
(a)
$n_{i}^{2}=n_{h} n_{e} \Rightarrow\left(10^{19}\right)^{2}=10^{21} \times n_{e} \Rightarrow n_{e}=10^{17} / \mathrm{m}^{3}$
(d)

Atomic packing factor $=\frac{\text { volume occupied by the atoms in a unit cell }}{\text { volume of the unit cell }}$
(a)

Number of lattice points in a crystal structure will be

$$
n=\frac{N_{C}}{8}+\frac{N_{F}}{2}+\frac{N_{i}}{1}
$$

In bcc crystal, $N_{C}=8, N_{F}=0$ and $N_{i}=1$

$$
n=\frac{8}{8}+\frac{0}{1}+\frac{1}{1}=2
$$

(a)

Output signal voltage has phase difference of 180° with respect to input
(d)

GaAs $(E g=1.5 \mathrm{eV})$ is used for making infrared LED
(c)

In simple cubic lattice, volume, $V=a^{3}$
density $=\frac{\text { mass of unit cell }}{\text { volume of unit cell }}=\frac{A / N}{V}=\frac{A}{N a^{3}}$
(c)

Phosphorus is pentavalent impurity
(c)

According to the given figure A is at lower potential w.r.t. B. hence both diodes are in reverse biasing, so equivalent circuit can be redrawn as follows
\Rightarrow Equivalent resistance between A and B
$R=8+2+6=16 \Omega$

(d)

When reverse bias is increased the electron field across the junction also increases. At some stage the electric field becomes so high that it breaks the covalent bonds creating electron-hole pairs. This mechanism is known as zener breakdown. In breakdown region for a long range of load $\left(R_{L}\right)$ the voltage remains the same though the current may be large.
(c)

Potential barrier energy $\left(E_{b}\right)=$ work function $\left(W_{0}\right)+$ fermi energy $\left(E_{f}\right)$.
(c)

In P-type semiconductors, holes are the majority charge carriers
(d)

In positive half cycle one diode is in forward biasing and other is in reverse biasing while in negative half cycle their polarity reverses, and direction of current is opposite through R for positive and negative half cycles so out put is not rectified.
Since R_{1} and R_{2} are different hence the peaks during positive half and negative half of the input signal will be different
(b)

FET is unipolar
(c)

Electric conduction in semi-conductor takes place due to both electrons and holes.
(b)

For forward bias, $I=\frac{V}{R}=\frac{5}{25+10}=\frac{5}{35}=\frac{1}{7} A$
(c)

The output $F=(W+X)(W+Y)=W+(X \cdot Y)$
(c)
$\beta=\frac{\alpha}{1-\alpha}=\frac{0.95}{1-0.95}=\frac{0.95}{0.05}=19$
(a)

In the given condition diode is in reverse biasing so it acts as open circuit. Hence potential difference between A and B is $6 V$
(a)

If $A=1, B=1$ and $Y=0$, the gate can be NOR gate, NAND gate or exclusive NOR gate (ie, XOR gate).

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	A	D	A	A	D	C	C	C	B	D	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	C	C	D	B	C	B	C	C	A	A	

