Class: XIIth
Solutions

Topic :- SEMICONDUCTOR ELECTRONICS: MATERIALS,DEVIES AND SIMPLE CIRCUTS

1
(c)
$\alpha=0.8 \Rightarrow \beta=\frac{0.8}{(1-0.8)}=4$
Also $\beta=\frac{\Delta i_{c}}{\Delta i_{b}} \Rightarrow \Delta i_{c}=\beta \times \Delta i_{b}=4 \times 6=24 \mathrm{~mA}$
(c) causing reduction in height of depletion region and barrier potential.
(b) produce quite intense visible light.
(a)

The first data gives value of plate resistance
$r_{p}=\frac{\Delta V_{p}}{\Delta i_{p}}=\frac{10}{0.8 \times 10^{-3}}=\frac{10^{5}}{8} \Omega$
Also $g_{m}=\frac{\Delta i_{p}}{\Delta V_{g}}$ and $g_{m}=\frac{\mu}{r_{p}}$
$\Rightarrow \Delta V_{g}=\frac{\Delta i_{p} \times r_{p}}{\mu}=\frac{4 \times 10^{-3} \times 10^{5} / 8}{8}=6.25 \mathrm{~V}$
(c)

When p-end of p - n junction is connected to positive terminal of battery and n-end to negative terminal of battery, then $p-n$ junction is said to be in forward bias. In forward bias, the more numbers of electrons go from n-region to p-region and more number of holes go from p-region to n-region. Therefore, major current due to both types of carriers takes place through the junction causing, more recombination of electron hole pairs thus

In materials like gallium arsenide the number of photons of light energy is sufficient to

For the given combination
$Y=(A+B) \cdot C$
$Y=1$
If $A=1$
$B=0$
$C=1$
(c)

To convert decimal to binary we divide progressively the decimal number by 2 and write 5down remainder after each division. The remainder taken in reverse order, form the binary number.

2 429-1	
2	241-0
2	107-1
2	53-1
2	26-0
2	13-1
2	6-0
2	3-1
	1-0

Hence, $B C D$ equivalent of 429 is 110101101 .

Current in the circuit $=10 \mathrm{~mA}=10 \times 10^{-3} \mathrm{~A}$
and \quad voltage in the circuit $=6-2=4 \mathrm{~V}$
from Ohm's law,
$V=I R$
$\therefore=\frac{V}{I}=\frac{4}{10 \times 10^{-3}}=400 \Omega$
(d)

Boolean expression of the given circuit is $Y=\overline{\overline{A+B}+\overline{A+B}}=A+B$
(b)

Here emitter is forward biased and is common between input and output circuit. Thus the circuit is of $n-p-n$ transistor with a common emitter amplifier mode.
(c)
$(11010.101)=1 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+$
$1 \times 2^{1}+0 \times 2^{0}+1 \times 2^{-1}+$
$0 \times 2^{-2}+1 \times 2^{-3}$
$=16+8+0+2+0+\frac{1}{2}+0+\frac{1}{8}=26+\frac{1}{2}+\frac{1}{8}$
$=26 \frac{5}{8}=26.625$
(c)
$Y=\overline{A B}+\overline{B A}$
$\left.\begin{array}{rl}A & =0 B \\ \bar{A} & =1 \bar{B}=1\end{array}\right] Y=0$
$\left.\begin{array}{ll}A & =0 \\ \bar{A} & =1 \\ \bar{B} & =1 \\ =1\end{array}\right] Y=1$
$\left.\begin{array}{rl}A & =1 \\ \bar{A} & =0 \\ B & =0 \\ =\end{array}\right] Y=1$
$\left.\begin{array}{l}A=1 \quad B=1 \\ \bar{A}=0 \\ B\end{array}\right] Y=0$
(c)
$I=n_{e} A v_{d}$
$\frac{I_{e}}{I_{h}}=\frac{n_{e} \times\left(v_{d}\right)_{e}}{n_{h} \times\left(v_{d}\right)_{h}}$
Here, $\frac{n_{e}}{n_{h}}=\frac{7}{5} \frac{I_{e}}{I_{h}}=\frac{7}{4}$
$\frac{7}{4}=\frac{7}{5} \times \frac{\left(v_{d}\right)_{e}}{\left(v_{d}\right)_{h}}$
$\Rightarrow \frac{\left(v_{d}\right)_{e}}{\left(v_{d}\right)_{h}}=\frac{5}{7} \times \frac{7}{4}=\frac{5}{4}$
(c)
$I_{2}=I_{1}\left(\frac{V_{2}}{V_{1}}\right)^{3 / 2}=10\left(\frac{200}{50}\right)^{3 / 2}=80 \mathrm{~mA}$
(d)

$$
(11001.001)_{2}=1 \times 2^{0}+0 \times 2^{1}+0 \times 2^{2}+1 \times 2^{3}+1 \times 2^{4}+0 \times 2^{-1}+0 \times 2^{-2}+1
$$ $\times 2^{-3}=25.125$

(d)

In an intrinsic semiconductor, $n_{e}=n_{h}$

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	C	C	B	D	A	C	C	D	A	C			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	C	D	D	B	C	C	C	C	D	D			

