Class: XIIth
Date :
Solutions
Subject : PHYSICS
DPP No. : 10

Topic :- SEmiconductor electronics: MATERIALS,DEVIES AND SIMPLE CIRCUITS

(b)
$\beta=\frac{I_{c}}{I_{b}}=\frac{I_{e}-I_{b}}{I_{b}}=\frac{I_{e}}{I_{b}}-1$ or $\frac{I_{e}}{I_{b}}=1+\beta$
or $I_{b}=\frac{I_{e}}{1+\beta}=\frac{8.2}{1+40}=\frac{8.2}{41}=0.20 \mathrm{~mA}$.

1

2

3

4

6
(a)
$g_{m}=\left(\frac{\Delta I_{p}}{\Delta V_{g}}\right)_{V_{p}=\text { constant }}=\frac{(7.5-5.5)}{-1.2-(-2.2)}=2 \mathrm{mmho}$
(b)

For 'AND' gate, if output is 1 then both inputs must be 1
(b)

(b)
$V_{\text {peak }}=\sqrt{2} V_{\text {rms }}=\sqrt{2} \times 141.4=200 \mathrm{~V}$
8
(b)

Voltage across zener diode is constant

$i_{1 k \Omega}=\frac{15 \text { volt }}{1 \mathrm{k} \Omega}=15 \mathrm{~mA}$
$i_{250 \Omega}=\frac{(20-15) \mathrm{V}}{250 \Omega}=\frac{5 \mathrm{~V}}{250 \Omega}=\frac{20}{1000} \mathrm{~A}=20 \mathrm{~mA}$
$\therefore i_{\text {zener diode }}=(20-15)=5 \mathrm{~mA}$
(a) across the resistance
(d)
$\beta=\frac{I_{c}}{I_{b}}>1$ or $I_{c}>I_{b}$.
(c) majority charge carriers
(b)
$\mu=r_{p} \times g_{m}=20 \times 2.5=50$
From $A=\frac{\mu R_{L}}{r_{p}+R_{L}} \Rightarrow r_{p}+R_{L}=\frac{\mu R_{L}}{A}=\frac{50 R_{L}}{10}=5 R_{L}$
$\Rightarrow 4 R_{L}=r_{p} \Rightarrow R_{L}=\frac{r_{p}}{4}=\frac{20}{4}=5 k \Omega$
(c)

Forward resistance
$=\frac{\Delta V}{\Delta I}=\frac{0.7-0.5}{1.0 \times 10^{-3}}=200 \Omega$.
(b)
$\beta=\frac{\alpha}{1-\alpha}=\frac{0.96}{1-0.96}=24$
(a)

In forward biasing, resistance of $P N$ junction diode is zero, so whole voltage appears

In forward biasing of $P N$-junction diode, current mainly flows due to the diffusion of

Diode is in forwards biasing hence the circuit can be redrawn as follows

$V_{A B}=\frac{30}{(10+5)} \times 5=10 \mathrm{~V}$
(c)

According to Richardson-Dushman equation, number of thermions emitted per sec per unit area $J=A T^{2} e^{-W_{0} / k T} \Rightarrow J \propto T^{2}$
(b)

According to Pauli's exclusion principle, the electronic configuration of number of subshells existing in a shell and number of electrons entering each subshell is found. Hence, on the basis of Pauli's exclusion principle, the manifestation of band structure in solids can be explained.
(a)

The energy band scheme of semiconductors is shown here.

In semiconductors, valence band and conduction band are separated by an energy gap called the forbidden energy gap. It is very small. At room temperature some electrons in valence band acquire thermal energy. This energy is more than forbidden energy gap E_{g}, thus they jump into the conduction band and leaves their vacancy in the valence band which act as holes. Hence, at room temperature valence band is partially empty and conduction band is partially filled.

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	B	B	A	B	B	B	B	B	A	D			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	C	B	B	C	B	A	C	B	B	A			

