

Class: XIIth Subject: PHYSICS

Date: DPP No.: 1

Topic:-.semiconductor electronics: materials, devies and simple circuits

1. The grid in a triode valve is used

- a) To increases the thermionic emission
- b) To control the plate to cathode current
- c) To reduce the inter-electrode capacity
- d) To keep cathode at constant potential

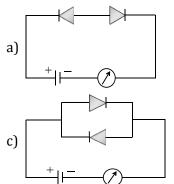
2. A transistor has $\beta=40$. A charge in base current of 100 μA , produces change in collector current

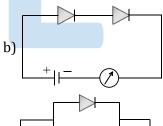
- a) $40 \times 100 \, \mu A$
- b) $(100 40)\mu A$
- c) $100 + 40 \mu A$
- d) $100 \times /40~\mu A$

3. In a fcc lattice structure, what is the effective number of atoms?

a) 4

b)3


c) 2


d)1

4. The band gap in germanium and silicon in *eV* respectively is

- a) 0.7, 1.1
- b) 1.1, 0.7
- c) 1.1, 0
- d) 0, 1.1

5. Which circuit will not show current in ammeter

6. The value of current in the following diagram will be

- + 5V 200 Ω + 3°
- a) Zero
- b) 10^{-2} A
- c) 10 A

d)

d) 0.025 A

7. Radiowaves of constant amplitude can be generated with

- a) FET
- b) Filter
- c) Rectifier
- d) Oscillator

8. The plate current in a triode is given by

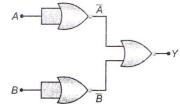
$$I_p = 0.004 (V_p + 10V_g)^{3/2} mA$$

Where I_p , V_p and V_g are the values of plate current, plate voltage and grid voltage, respectively. What are the triode parameters μ , r_p and g_m for the operating point at $V_p = 120 \ volt$ and V_g

$$=-2 volt$$

a) 10, 16.7 $k\Omega$, 0.6 m mho

b) 15, 16.7 $k\Omega$, 0.06 m mho


c) 20, 6 $k\Omega$, 16.7 m mho

- d) None of these
- 9. In p-n junction, the barrier potential offers resistance to
 - a) Free electrons in *n*-region and holes in –region
 - b) Free electrons in *p*-region and holes in *n*-region
 - c) Only free electrons in *n*-region
 - d) Only holes in *p*-region
- 10. When the plate voltage of a triode is 150V, its cut-off voltage is -5 V. On increasing the plate voltage to 200 V, the cut-off voltage can be
 - a) -4.5 V
- b) -5.0 V
- c) -2.3 V d) -6.66 V
- 11. Resistivity of a semiconductor depends on
 - a) Shape of semiconductor
 - b) Atomic nature of semiconductor
 - c) Length of semiconductor
 - d) Shape and atomic nature of semiconductor
- 12. The valency of the impurity atom that is to be added to germanium crystal so as to make it a *N*type semiconductor, is
 - a) 6

b)5

c) 4

- d)3
- 13. Pure Si at 500 K has equal number of electron (n_e) and hole (n_h) concentrations of 1.5×10^{16} m^{-3} . Doping by indium increases n_h to $4.5 \times 10^{22} m^{-3}$. The doped semiconductor is of
 - a) n type with electron concentration $n_e = 2.5 \times 10^{23} m^{-3}$
 - b) p type having electron concentration $n_e = 5 \times 10^9 m^{-3}$
 - c) n type with electron concentration $n_e = 5 \times 10^{22} m^{-3}$
 - d) p type with electron concentration $n_e = 2.5 \times 10^{10} m^{-3}$
- 14. Identify the operation performed by the circuit given in the figure.

- a) NOT
- b) AND
- c) OR

- d) NAND
- 15. For germanium crystal, the forbidden energy gap in joules is
 - a) 1.12×10^{-19}
- b) 1.76×10^{-19}
- c) 1.6×10^{-19}
- d) Zero
- 16. Absorption of X-Rays is maximum in which of the following material sheet of same thickness
 - a) Cu

b) Au

c) Be

- d)Pb
- 17. Current gain β_{AC} common emitter mode of transistor is

a)
$$\beta_{AC} = \left(\frac{\Delta I_C}{\Delta I_B}\right)$$
, $V_C = \text{constant}$

b)
$$\beta_{AC} = \left(\frac{\Delta I_B}{\Delta I_C}\right)$$
, $V_C = \text{constant}$

c)
$$\beta_{AC} = \left(\frac{\Delta I_C}{\Delta I_E}\right)$$
, $V_C = \text{constant}$

d)
$$\beta_{AC} = \left(\frac{\Delta I_E}{\Delta I_C}\right)$$
, $V_C = \text{constant}$

- 18. When boron is added as an impurity to silicon, the resulting material is
 - a) *n*-type semiconductor

 - c) p-type conductor

- b) n-type conductor
- d) *p*-type semiconductor
- 19. Reverse bias applied to a *p-n* junction diode
 - a) Lowers the potential barrier
 - b) Decreases the majority charge carries
 - c) Raises the potential barrier
 - d) Change the mass of *p-n* junction diode
- 20. The peak voltage in the output of a half-wave diode rectifier fed with a sinusoidal signal without filter is 10 V. The dc compound of the output voltage is
 - a) $10/\sqrt{2} V$
- b) $10/\pi V$
- c) 10 V
- d) $20/\pi V$

