CLASS : XITH
Solutions
SUBJECT : PHYSICS
DPP NO. : 6

Topic :- SYSTEM OF PARTICLES AND ROTATIONAL MOTION

1
(d)

The angular momentum is measure for the amount of torque that has been applied over time the object. For a particle with a fixed mass that is rotating about a fixed symmetry axis, the angular momentum is expressed as

$$
\begin{equation*}
L=I \omega \tag{i}
\end{equation*}
$$

Where I is moment of inertia of particle and ω the angular velocity.
Also, $\quad K=\frac{1}{2} I \omega^{2}$
Where K is kinetic energy of rotation.
From Eqs. (i) and (ii), we get

$$
\begin{aligned}
& L=\frac{2 K}{\omega^{2}} \omega=\frac{2 K}{\omega} \\
& L^{\prime}=\frac{2(K / 2)}{2 \omega}=\frac{1}{4}\left(\frac{2 K}{\omega}\right)=\frac{L}{4}
\end{aligned}
$$

Note In a closed system angular momentum is constant.

As there is no external torque, angular momentum will remain constant. When the tortoise moves from A to C, figure, moment of inertia of the platform and tortoise decreases.
Therefore, angular velocity of the system increases. When the tortoise moves from C to B, moment of inertia increases. Therefore, angular velocity decreases

If, $M=$ mass of platform
$R=$ radius of platform
$m=$ mass of tortoise moving along the chord $A B$
$a=$ perpendicular distance of O from $A B$
Initial angular momentum, $I_{1}=m R^{2}+\frac{M R^{2}}{2}$
At any time t, let the tortoise reach D moving with velocity v
$\therefore A D=v t$
$A C=\sqrt{R^{2}-a^{2}}$
As $D C=A C-A D=\left(\sqrt{R^{2}-a^{2}}-v t\right)$
$\therefore O D=r=a^{2}+\left[\sqrt{R^{2}-a^{2}}-v t\right]^{2}$
Angular momentum at time t
$I_{2}=m r^{2}+\frac{M R^{2}}{2}$
As angular momentum is conserved
$\therefore I_{1} \omega_{0}=I_{2} \omega(t)$
This shows that variation of $\omega(t)$ with time is nonlinear. Choice (c) is correct
(a)
$x_{C M}=\frac{m_{1} x_{1}+m_{2}+x_{2}+\ldots}{m_{1}+m_{2}+\ldots}$
$=\frac{m l+2 m .2 l+3 m .3 l+\ldots}{m+2 m+3 m+\ldots}$
$=\frac{m l(1+4+9+\ldots)}{m(1+2+3+\ldots)}=\frac{\frac{\ln (n+1)(2 n+1)}{6}}{\frac{n(n+1)}{2}}=\frac{l(2 n+1)}{3}$
(a)

In the absence of external torque angular momentum remains constant
(b)

When l is length of rod and its mass, then
the moment of inertia of its axis passing through its centre of gravity and perpendicular to its length is given by

$$
I=\frac{m l^{2}}{12}
$$

For two rods as shown,

$$
I=\frac{m l^{2}}{12}+\frac{m l^{2}}{12}=\frac{m l^{2}}{6}
$$

(d)

Torque is a measure of how much a force acting on an object causes that object to rotate. The object rotates about an axis (O). The distance from O is r, where forces acts, hence torque $\tau=\mathbf{F} \times \mathbf{r}$. It is a vector quantity and points from axis of rotation to the point where the force acts.

(a)

As the mass is concentrated at the centre of the rod, therefore,
$m g \times \frac{l}{2}=\frac{1}{2} I \omega^{2}=\frac{1}{2}\left(\frac{m l^{2}}{3}\right) \omega^{2}$
or $l^{2} \omega^{2}=3 \mathrm{~g} l$

Velocity of other end of the rod $v=l \omega=\sqrt{3 g l}$
(d)

$$
\begin{aligned}
& \begin{array}{r}
v=\sqrt{\frac{2 g \mathrm{~h}}{1+\frac{I}{m r^{2}}}}=\sqrt{\frac{2 \times 10 \times 3}{1+\frac{m r^{2}}{2 \times m r^{2}}}}=\sqrt{\frac{2 \times 10 \times 3}{\frac{3}{2}}}=\sqrt{40} \\
\Rightarrow v=r \omega
\end{array} \\
& \Rightarrow r=\frac{v}{\omega}=\frac{\sqrt{40}}{2 \sqrt{2}}=\sqrt{\frac{40}{8}}=\sqrt{5} \mathrm{~m}
\end{aligned}
$$

(a)

When non-conservative force acts on a body, then mechanical energy is converted into non-mechanical energy and vice - versa.
(a)

Work done $=$ Change in rotational kinetic energy
$=\frac{1}{2} I \times\left(\omega_{1}^{2}-\omega_{2}^{2}\right)=\frac{1}{2} I \times 4 \pi^{2}\left(n_{1}^{2}-n_{2}^{2}\right)$
$=\frac{1}{2} \times \frac{9.8}{\pi^{2}} \times 4 \pi^{2}\left(10^{2}-5^{2}\right)=9.8 \times 2 \times 75=1470 \mathrm{~J}$
(b)

Co-ordinate of CM is given by

$$
X_{\mathrm{CM}}=\frac{m_{1} x_{1}+m_{2} x_{2}}{m_{1}+m_{2}}
$$

Taking parts A and B as two bodies of same system

$$
\begin{aligned}
& m_{1}=l \times b \times \sigma=8 \times 2 \times \sigma=16 \sigma \\
& m_{2}=l \times b \times \sigma=6 \times 2 \times \sigma=12 \sigma
\end{aligned}
$$

Choosing O as origin,

$$
\begin{gathered}
\\
\\
\therefore \quad x_{1}=1 \mathrm{~m}, x_{2}=2+3=5 \mathrm{~m} \\
\therefore \quad X_{\mathrm{CM}}=\frac{16 \sigma \times 1+12 \sigma \times 5}{16 \sigma+12 \sigma}=\frac{19}{7} \\
\\
=2.7 \mathrm{~m} \text { from } O
\end{gathered}
$$

(b)

Moment of inertia of a circular ring about a diameter

$$
I=\frac{1}{2} M r^{2}
$$

(b)

The kinetic energy of a rolling body is

$$
\frac{1}{2} m v^{2}\left(1+\frac{k^{2}}{R^{2}}\right)
$$

According to law of conservation of energy, we get

$$
\frac{1}{2} m v^{2}\left(1+\frac{k^{2}}{R^{2}}\right)=m g \mathrm{~h}
$$

Where h is the height of the inclined plane

$$
\therefore v=\sqrt{\frac{2 g_{\mathrm{h}}}{1+\frac{k^{2}}{R^{2}}}}
$$

For a solid sphere $\frac{k^{2}}{R^{2}}=\frac{2}{5}$
Substituting the given values, we get
$v=\sqrt{\frac{2 \times 10 \times 7}{\left(1+\frac{2}{5}\right)}}=\sqrt{\frac{2 \times 10 \times 7 \times 5}{7}}=10 \mathrm{~ms}^{-1}$
(d)
M.I. of disc $I=\frac{1}{2} M R^{2}=\frac{1}{2} M\left(\frac{M}{\pi \rho t}\right)=\frac{1 M^{2}}{2 \pi \rho t}$
(As $\rho=\frac{\text { Mass }}{\text { Volume }}=\frac{M}{\pi R^{2} t}$ therefore $\left.R^{2}=\frac{M}{\pi \rho t}\right)$
$\therefore I \propto \frac{1}{\rho}[$ If M and t are constant $) \Rightarrow \frac{I_{1}}{I_{2}}=\frac{\rho_{2}}{\rho_{1}}$
(c)
$\frac{1}{2} I \omega^{2}=360 \Rightarrow I=\frac{2 \times 360}{(30)^{2}}=\frac{2 \times 360}{30 \times 30}=0.8 \mathrm{~kg} \times \mathrm{m}^{2}$
(d)
(a) Impulsive received by m

$$
\begin{aligned}
& \overrightarrow{\mathrm{J}}=m\left(\overrightarrow{\mathrm{v}}_{f}-\overrightarrow{\mathrm{v}}_{i}\right) \\
& =m(-2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}) \\
& =m(-5 \hat{\mathrm{i}}-\hat{\mathrm{j}})
\end{aligned}
$$

And impulse received by M
$=-\overrightarrow{\mathrm{J}}=m(5 \hat{\mathrm{i}}+\hat{\mathrm{j}})$
(b) $m v=m(5 \hat{i}+\hat{j})$

Or $v=\frac{m}{M}(5 \hat{\mathbf{i}}+\hat{\mathbf{j}})=\frac{1}{13}(5 \hat{\mathrm{i}}+\hat{\mathrm{j}})$
(c) $e=$ (relative velocity of separation/relative velocity of approach) in the direction of $-\overrightarrow{\mathrm{J}}$

$$
=11 / 17
$$

(d)

Remains conserved until the torque acting on it remain zero
(c)

$I_{1}=$ M.I. of ring about its diameter $=\frac{1}{2} m r^{2}$
$I_{2}=$ M.I. of ring about the axis normal to plane and passing through centre $=m r^{2}$
Two rings are placed according to figure. Then

$$
I_{x x^{\prime}}=I_{1}+I_{2}=\frac{1}{2} m r^{2}+m R^{2}=\frac{3}{2} m r^{2}
$$

(c)
$\tau=\frac{d L}{d t}$, if $\tau=0$ then $L=$ constant
(b)

If rod is rotated about end A, then vertical component of velocity v_{\perp} of end A will be zero.

$$
\begin{aligned}
\therefore \quad \omega & =\frac{v \cos 60^{\circ}}{l}=\frac{\sqrt{3} v}{2 l} \\
& =\frac{\sqrt{3} \times 3}{2 \times 0.5}=5.2 \mathrm{rads}^{-1}
\end{aligned}
$$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	D	C	A	A	B	D	A	D	A	A	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	B	B	B	D	C	D	D	C	C	B	

