

Subject : BIOLOGY DPP No. : 8 Class: XIth

Date:

## Tonic :- Resniration in Plants

|    |                                                                                                             | pic :- Kespirauc                                   |                                                                                 |                                   |  |  |
|----|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------|--|--|
| 1. | Biological oxidation in Kraa) $0_2$                                                                         | ebs' cycle involves b) $CO_2$                      | c) 0 <sub>3</sub>                                                               | d) NO <sub>2</sub>                |  |  |
| 2. | Last electron acceptor during ETS is a) $O_2$ b) cyt- $a$                                                   |                                                    | c) cyt-a <sub>2</sub>                                                           | d) cyt-a <sub>3</sub>             |  |  |
| 3. | Which enzyme converts g a) Zymase                                                                           | lucose into alcohol?<br>b) Diastase                | c) Invertase d) Lipase                                                          |                                   |  |  |
| 4. | Glycolysis is a part of a) Anaerobic respiration of c) Both (a) and (b)                                     | only                                               | b) Aerobic respiration or<br>d) Krebs' cycle                                    |                                   |  |  |
| 5. | When tripalmitin is used a) >1                                                                              | a <mark>s a substrate in respiration b) 1.0</mark> | on, the RQ is<br>c) 0.9                                                         | d) 0.7                            |  |  |
| 6. | Read the following table a  I. DCMU Herb  II. PMA Fung  III. Colchicine Alkal  IV. Soilrite Sodiu  a) I, II | icide Inhibitor of non-<br>icide Reduce transpir   | -cyclic electron transport<br>ration<br>terility                                | d) II, IV                         |  |  |
| 7. | In aerobic respiration ren<br>a) Matrix of the mitochon<br>c) Both (a) and (b)                              |                                                    | occurs in b) Inner membrane of the mitochondria d) Anywhere in the mitochondria |                                   |  |  |
| 8. | In anaerobic respiration balance a) Lactic acid                                                             | pacteria produce<br>b) Formic acid                 | c) Acetic acid                                                                  | d) Glutamic acid                  |  |  |
| 9. | During its formation, brea a) Yeast                                                                         | nd becomes porous due to<br>b) Bacteria            | release of Carbon dioxide l<br>c) Virus                                         | oy the action of<br>d) Protozoans |  |  |

| 10. | Before entering respiratory pathway amino acids are                                                                                                                                            |                                             |                                     |                                                                                                                                                                                                 |                   |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|
|     | a) Decarboxylated                                                                                                                                                                              | b) Hydrolysed                               | c) Deami                            | nated                                                                                                                                                                                           | d) Phosphorylated |  |  |
| 11. | The intermediate compou                                                                                                                                                                        | nd common for aerobic an<br>b) Pyruvic acid | nd anaerob<br>c) Acetyl             | =                                                                                                                                                                                               | d) Succinic acid  |  |  |
| 12. | How many ATP molecules are obtained from fermentation of 1 molecule of glucose?  a) 2 b) 4 c) 3 d) 5                                                                                           |                                             |                                     |                                                                                                                                                                                                 |                   |  |  |
| 13. | During which stage in the complete oxidation of glucose are the greatest number of ATP molecules formed from ADP?                                                                              |                                             |                                     |                                                                                                                                                                                                 |                   |  |  |
|     | <ul><li>a) Conversion of pyruvic acid to acetyl Co-A</li><li>c) Glycolysis</li></ul>                                                                                                           |                                             |                                     | <ul><li>b) Electron transport chain</li><li>d) Krebs' cycle</li></ul>                                                                                                                           |                   |  |  |
| 14. | In plants the cells in the interior parts are a) Dead and for mechanical support c) Both (a) and (b)                                                                                           |                                             |                                     | <ul><li>b) Live and for various purpose</li><li>d) None of the above</li></ul>                                                                                                                  |                   |  |  |
| 15. | Ultimate source of energy a) Sunlight                                                                                                                                                          | in biosphere, is<br>b) Protein              | c) Fats                             |                                                                                                                                                                                                 | d) Enzymes        |  |  |
| 16. | Dough kept overnight in va) Absorption of carbon dc) Cohesion                                                                                                                                  |                                             | ft and spon<br>b) Ferme<br>d) Osmos | entation                                                                                                                                                                                        |                   |  |  |
| 17. | The respiratory quotient (RQ) or respiratory ratio is                                                                                                                                          |                                             |                                     |                                                                                                                                                                                                 |                   |  |  |
|     | a) RQ = $\frac{\text{Volume of O}_2 \text{ evolved}}{\text{Volume of CO}_2 \text{ consumed}}$<br>c) RQ = $\frac{\text{Volume of CO}_2 \text{ consumed}}{\text{Volume of O}_2 \text{ evolved}}$ |                                             |                                     | b) RQ = $\frac{\text{Volume of O}_2 \text{ consumed}}{\text{Volume of CO}_2 \text{ evolved}}$ $\text{RQ} = \frac{\text{Volume of CO}_2 \text{ evolved}}{\text{Volume of O}_2 \text{ consumed}}$ |                   |  |  |
|     |                                                                                                                                                                                                |                                             | d) $RQ =$                           |                                                                                                                                                                                                 |                   |  |  |
| 18. | Maximum amount of ener a) Fats                                                                                                                                                                 | gy/ATP is liberated on oxi<br>b) Proteins   | dation of<br>c) Starch              |                                                                                                                                                                                                 | d) Vitamins       |  |  |
| 19. | $NADH_2 \rightarrow FAD \rightarrow FADH_2$                                                                                                                                                    |                                             |                                     |                                                                                                                                                                                                 |                   |  |  |
|     | The given reaction occurs  a) Heart cells                                                                                                                                                      | in<br>b) Kidney cells                       | c) Liver (                          | cells                                                                                                                                                                                           | d) Nerve cells    |  |  |
| 20  | •                                                                                                                                                                                              |                                             | -                                   |                                                                                                                                                                                                 |                   |  |  |
| 20. | Net yield of ATP molecules in aerobic respiration dural 2 ATP molecules                                                                                                                        |                                             | _                                   | ng Krebs' cycle per glucose molecule is<br>b) 8 ATP molecules                                                                                                                                   |                   |  |  |
|     | •                                                                                                                                                                                              |                                             | -                                   | d) 38 ATP molecules                                                                                                                                                                             |                   |  |  |