

Class: XIth

Date:

Subject: BIOLOGY

DPP No.: 4

Topic :- Respiration in Plants

	101	pic :- Kespirai	non in Fiants			
1.	A businessman of 80 kg weight requires 4800 kcal energy daily. How many ATP molecules and glucose					
	molecules does he require to produce this much energy?					
	a) 20 molecules of glucose and 384 molecules of ATPb) 40 molecules of glucose and 264 molecules of ATP					
	2) 18 molecules of glucose and 657 molecules of ATP					
	d) 20 molecules of glucose and 460 molecules of ATP					
2.	Which one of the following pairs is wrongly matched?					
	a) Methanogens - Gobar g		b) Yeast – Ethanol			
	c) Streptomycetes - Antib	iotic	d) Coliforms - Vinega	-		
3.	In hurdle race, which of th					
	a) Performed ATP	b) Glycolysis	c) Lactate	d) Oxidative metabolism		
	D ' (1 '					
4.	During the exercise, pyruv		2 (1 1	D.O. alamatica et l		
	a) Lactic acid	b) Fumaric acid	c) Glutamic acid	d) Oxaloacetic acid		
5.	The compounds which are oxidised during respiration are known as					
J.	a) Respiratory substrates		b) Oxalo acid			
	c) TCA cycle		d) None of these			
	c) Tan cycle		a) None of these			
6.	Refer the given equation					
	$2(C_{51}H_{98}O_6) + 145 O_2 \rightarrow 102 CO_2 + 98 H_2O + Energy$					
	The respiratory quotient in this case is					
	a) 1	b) 0.7	c) 1.45	d) 1.62		
	,	,	,	,		
7.	Energy required for life processes is obtained by					
	a) Oxidation	b) Reduction	c) Deduction	d) Antilation		
8.	Choose the correct statement for the given options					
	a) Intermediates in the pathway are utilised to synthesise other compounds					
	b) No alternative substrates other than glucose is allowed to enter the pathway at intermediate stages					

c) None of the substrate is respired in the pathway at intermediary stages

d) Pathway functioning is insequential

9.	In plants, glucose is derived from which of the following?					
	a) Protein	b) Fat	c) Oxalic acid	d) Sucrose		
10.	The chemiosmotic coupling hypothesis of oxidative phosphorylation proposes that adenosine triphosphate (ATP) is formed because					
	a) High energy bonds are proteins	formed in mitochondrial	b) ADP is pumped out of the matrix into the intermembrane space			
	c) A proton gradient forms across the inner membrane		d) There is a change in the permeability of the inner mitochondrial membrane towards adenosine diphosphate (ADP)			
11.	The process by which there is inhibition of aerobic respiration by atmospheric oxygen is					
	a) Pasteur's effect	b) Calvin's effect	c) Darwin's effect	d) None of these		
12.	More carbon dioxide is ev a) Fat	olved than the volume of b) Sucrose	c) Glucose	respiratory substrate is d) Organic acid		
13.	Anaerobic respiration is also called as					
	a) β -oxidation	b) Fermentation	c) Oxidation	d) None of these		
14.	a) Convert potential energyb) Convert kinetic energyc) Create energy in the ce	gy to kinetic energy to potential energy ll	glucose to an energy that the	e cell can use		
15.	Which of the following sul	hstances vield less than 4	kcal/mol when its phospha	te hond is hydrolysed?		
10.	a) Creatine phosphate	b) ADP	c) Glucose-6-phosphate	d) ATP		
16.	Five gram mole of glucose a) 3430 kcal of energy	-	eleases c) 2020 kcal of energy	d) 430 kcal of energy		
17.	NADP, NAD and FAD are acceptors of					
	a) Phosphate	b) Electrons	c) Oxygen	d) Hydrogen		
18.	How many PGAL are produced by glycolysis of 3 molecules of glucose? How many ATP are released by respiration of these PGAL till formation of CO_2 and H_2O ?					
	a) 4 PGAL- 80 ATP	b) 6 PGAL-160ATP	c) 4 PGAL-40ATP	d) 6 PGAL-120ATP		
19.	Identify the specific group, which carries out the following biochemical reaction: Aspartic $acid+\alpha$ -ketoglutaric $acid\to 0$ xaloacetic $acid+G$ lutamic $acid$ a) Synthetases b) Peptidases c) Transaminases d) Lyases					

- 20. Which of following is connecting link between glycolysis and Krebs' cycle?
 - a) Pyruvic acid
 - b) Isocitric acid
 - c) Acetyl Co-A
 - d) Phosphoglyceric acid

