Class : XIIth Date :

DPP DAILY PRACTICE PROBLEMS

Subject : PHYSICS DPP No. : 8

Topic :- RAY OPTICS AND OPTICAL INSTRUMENTS

Solutions

1

2

(c) Distance of object from mirror = $15 + \frac{33.25}{1.33} = 40$ cm Distance of image from mirror = $15 + \frac{25}{1.33} = 33.8$ cm For the mirror, $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ $\therefore \frac{1}{-33.8} + \frac{1}{-40} = \frac{1}{f}$ $\therefore f = -18.3 \text{ cm}$ \therefore Most suitable answer is (c). (a) Applying Snell's law between the surfaces A and B r_1 C $n_1 \sin i = n_2 \sin r_1$...(i) Again applying Snell's law between surfaces *B* and *C* $n_2 \sin r_1 = n_3 \sin r_2$...(ii) From Eqs. (i) and (ii), we get $n_1 isn i = n_3 sin r_2$ Here, $r_2 = 90^{\circ}$ $\therefore n_1 \sin i = n_3$ $\Rightarrow \sin i = \frac{n_3}{n_1}$

3

(b)

When an object is placed between 2f and f (focal length) of the diverging lens, the image is virtual, erect and diminished as shown in the graph. To calculate the distance of the image from the lens, we apply

$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u} \Longrightarrow \frac{1}{-20} = \frac{1}{v} - \frac{1}{30}$$
$$\Rightarrow v = -\frac{(20)(30)}{20 + 30}$$
$$= -12 \text{ cm (to the left to the diverging lens.)}$$

4

(b)

(c)

(d)

(b)

For a telescope, magnification when final image is formed at infinity

$$m_{\infty} = \frac{f_0}{f_e} = \frac{100}{10} = 10$$

6

A simple microscope is just a convex lens with object lying between optical centre and focus of the lens

7

F

For real image
$$m = -2$$

$$\therefore m = \frac{f}{u+f} \Rightarrow -2 = \frac{f}{u+f} = \frac{20}{u+20} \Rightarrow u = -30 \ cm$$
(c)
1 (c) (1 1)

8

$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

For biconvex lens $R_2 = -R_1 \div \frac{1}{f} = (\mu - 1) \left(\frac{2}{R}\right)$ Given $R = \infty$: $f = \infty$, so no focus at real distance

9

Erect and enlarged image can produced by concave mirror f + 3 fΙ

$$\frac{1}{0} = \frac{f}{f-u} \Rightarrow \frac{+5}{+1} = \frac{f}{f-(-4)} \Rightarrow f = -6 \ cm$$
$$\Rightarrow R = 2f = -12 \ cm$$

11

(a) The real depth $= \mu$ [apparent depth] \Rightarrow In first case, the real depth $h_1 = \mu(b - a)$ Similarly in the second case, the real depth $h_2 = \mu(d - c)$ Since $h_2 > h_1$, the difference of real depths $= h_2 - h_1 = \mu(d - c - b + a)$ Since the liquid is added in second case, (d-b)<u>a)</u>

$$h_2 - h_1 = (d - b) \Rightarrow \mu = \frac{1}{(d - c - b + b)}$$
(b)

13

Optical path $\mu x = \text{constant}$

14

(a)

Focal length of converging lens f = +10 cm u = -9 cm From lens formula $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ or $\frac{1}{v} = \frac{1}{f} + \frac{1}{u} = \frac{1}{10} + \frac{1}{(-9)}$ $\frac{1}{v} = \frac{1}{10} - \frac{1}{9}$ Or v = -90 cm Magnification, $m = \frac{v}{u} = \frac{-90}{-9} = 10$ m \therefore Apparent area of card through lens $= 10 \times 10 \times 1 \times 1 = 100 \text{ mm}^2 = 1 \text{ cm}^2$ (b) For the relaxed eye, magnifying power is $M = -\frac{v_0}{u_0} \frac{D}{f_e}$ $\therefore -45 = -\frac{v_0}{u_0} \times \frac{25}{5}, \frac{v_0}{u_0} = 9$

For objective lens, image is real

$$\therefore v_0 = + v_0, u_0 = -\frac{v_0}{9}$$

Given, $f_0 = 1$ cm
Form $\frac{1}{v_0} - \frac{1}{u_0} = \frac{1}{f_0}$
 $\frac{1}{v_0} + \frac{9}{v_0} = \frac{1}{1}$; $v_0 = 10$ cm
Length of the tube $= v_0 + f_e = 10 + 5 = 15$ cm

16

15

Total deviation

(c)

$$= (180^{\circ} - 2\alpha) + (180^{\circ} - 2\beta)$$

= 360^{\circ} - 2(\alpha + \beta)
But 90^{\circ} - \alpha + 90^{\circ} - \beta + \theta = 180^{\circ}

Or $\theta = \alpha + \beta$ \therefore Total deviation = 360° - 2 θ

17

(c)

(c)

If eye is kept at a distance *d* then $MP = \frac{L(D-d)}{f_0 f_e}$, *MP* decreases

18

When f_1 and f_2 are focal lengths of lenses combined together, image formation takes place as follows

From lens formula $\frac{1}{v'} - \frac{1}{u} = \frac{1}{f_1} \qquad \dots \dots \dots (i)$ $\frac{1}{v} - \frac{1}{v'} = \frac{1}{f_2} \qquad \dots \dots \dots \dots (ii)$

Adding Eqs. (i) and (ii), we get

$$\frac{1}{v} - \frac{1}{u} = \frac{1}{f_1} + \frac{1}{f_2}$$

If this lens is replaced by a single lens, then focal length of combination is

$$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2} = \frac{1}{v} - \frac{1}{u}$$
$$\implies F = \frac{f_1 f_2}{f_1 + f_2}$$
(a)

19

Here we treat the line on the objective as the object and the eyepiece as the lens Hence $u = -(f_o + f_e)$ and $f = f_e$

Now $\frac{1}{v} - \frac{1}{-(f_o + f_e)} = \frac{1}{f_e}$ Solving we get $v = \frac{(f_o + f_e)f_e}{f_o}$ Magnification $= \left|\frac{v}{u}\right| = \frac{f_e}{f_o} = \frac{\text{Image size}}{\text{Object size}} = \frac{l}{L}$

: Magnification of telescope in normal adjustment

$$=rac{f_o}{f_e}=rac{L}{l}$$

20

(d)

$$\frac{l}{0} = \frac{v}{u}$$

 $\frac{l}{15} = \frac{-25}{-10}$
 $l = 15 \times 2.5 \text{ cm} = 37.5 \text{ cm}$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	C	A	В	В	С	С	D	С	В	В
Q.	11	12	13	14	15	16	17	18	19	20
A.	A	C	В	A	В	C	C	С	A	D

