Class: XIIth
Solutions

1
(c)

Distance of object from mirror $=15+\frac{33.25}{1.33}=40 \mathrm{~cm}$
Distance of image from mirror $=15+\frac{25}{1.33}=33.8 \mathrm{~cm}$
For the mirror, $\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$
$\therefore \frac{1}{-33.8}+\frac{1}{-40}=\frac{1}{f}$
$\therefore f=-18.3 \mathrm{~cm}$
\therefore Most suitable answer is (c).
(a)

Applying Snell's law between the surfaces A and B

$n_{1} \sin i=n_{2} \sin r_{1}$
Again applying Snell's law between surfaces B and C
$n_{2} \sin r_{1}=n_{3} \sin r_{2}$
From Eqs. (i) and (ii), we get
$n_{1} i s n i=n_{3} \sin r_{2}$
Here, $r_{2}=90^{\circ}$
$\therefore n_{1} \sin i=n_{3}$
$\Rightarrow \sin i=\frac{n_{3}}{n_{1}}$
(b)

When an object is placed between $2 f$ and f (focal length) of the diverging lens, the image is virtual, erect and diminished as shown in the graph. To calculate the distance of the image from the lens, we apply

$$
\frac{1}{f}=\frac{1}{v}-\frac{1}{u} \Rightarrow \frac{1}{-20}=\frac{1}{v}-\frac{1}{30}
$$

$$
\Rightarrow v=-\frac{(20)(30)}{20+30}
$$

$$
=-12 \mathrm{~cm} \text { (to the left to the diverging lens.) }
$$

(b)

For a telescope, magnification when final image is formed at infinity
$m_{\infty}=\frac{f_{0}}{f_{e}}=\frac{100}{10}=10$
i.e., $\mu_{1} x_{1}=\mu_{2} x_{2}$
$\Rightarrow 1.53 \times 4=\mu_{2} \times 4.5$
$\Rightarrow \mu_{w}=\frac{1.53 \times 4}{4.5}=1.36$
(a)

Focal length of converging lens $f=+10 \mathrm{~cm}$
$u=-9 \mathrm{~cm}$
From lens formula
$\frac{1}{f}=\frac{1}{v}-\frac{1}{u}$
or $\quad \frac{1}{v}=\frac{1}{f}+\frac{1}{u}=\frac{1}{10}+\frac{1}{(-9)}$
$\frac{1}{v}=\frac{1}{10}-\frac{1}{9}$
Or $\quad v=-90 \mathrm{~cm}$
Magnification , $m=\frac{v}{u}=\frac{-90}{-9}=10 \mathrm{~m}$
\therefore Apparent area of card through lens
$=10 \times 10 \times 1 \times 1=100 \mathrm{~mm}^{2}=1 \mathrm{~cm}^{2}$
(b)

For the relaxed eye, magnifying power is
$M=-\frac{v_{0}}{u_{0}} \frac{D}{f_{e}}$
$\therefore-45=-\frac{v_{0}}{u_{0}} \times \frac{25}{5}, \frac{v_{0}}{u_{0}}=9$
For objective lens, image is real
$\therefore v_{0}=+v_{0}, u_{0}=-\frac{v_{0}}{9}$
Given, $f_{0}=1 \mathrm{~cm}$
Form $\frac{1}{v_{0}}-\frac{1}{u_{0}}=\frac{1}{f_{0}}$
$\frac{1}{v_{0}}+\frac{9}{v_{0}}=\frac{1}{1} ; v_{0}=10 \mathrm{~cm}$
Length of the tube $=v_{0}+f_{e}=10+5=15 \mathrm{~cm}$
(c)

Total deviation

$=\left(180^{\circ}-2 \alpha\right)+\left(180^{\circ}-2 \beta\right)$
$=360^{\circ}-2(\alpha+\beta)$
But $90^{\circ}-\alpha+90^{\circ}-\beta+\theta=180^{\circ}$

Or $\theta=\alpha+\beta$
\therefore Total deviation $=360^{\circ}-2 \theta$

20
(c)

If eye is kept at a distance d then $M P=\frac{L(D-d)}{f_{0} f_{e}}, M P$ decreases
(c)

When f_{1} and f_{2} are focal lengths of lenses combined together, image formation takes place as follows
From lens formula
$\frac{1}{v^{\prime}}-\frac{1}{u}=\frac{1}{f_{1}}$
$\frac{1}{v}-\frac{1}{v^{\prime}}=\frac{1}{f_{2}}$
Adding Eqs. (i) and (ii), we get
$\frac{1}{v}-\frac{1}{u}=\frac{1}{f_{1}}+\frac{1}{f_{2}}$
If this lens is replaced by a single lens, then focal length of combination is
$\frac{1}{F}=\frac{1}{f_{1}}+\frac{1}{f_{2}}=\frac{1}{v}-\frac{1}{u}$
$\Rightarrow F=\frac{f_{1} f_{2}}{f_{1}+f_{2}}$
(a)

Here we treat the line on the objective as the object and the eyepiece as the lens
Hence $u=-\left(f_{o}+f_{e}\right)$ and $f=f_{e}$
Now $\frac{1}{v}-\frac{1}{-\left(f_{o}+f_{e}\right)}=\frac{1}{f_{e}}$
Solving we get $v=\frac{\left(f_{o}+f_{e}\right) f_{e}}{f_{o}}$
Magnification $=\left|\frac{v}{u}\right|=\frac{f_{e}}{f_{o}}=\frac{\text { Image size }}{\text { Object size }}=\frac{l}{L}$
\therefore Magnification of telescope in normal adjustment
$=\frac{f_{o}}{f_{e}}=\frac{L}{l}$
(d)
$\frac{I}{O}=\frac{v}{u}$
$\frac{I}{15}=\frac{-25}{-10}$
$I=15 \times 2.5 \mathrm{~cm}=37.5 \mathrm{~cm}$

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	C	A	B	B	C	C	D	C	B	B			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	A	C	B	A	B	C	C	C	A	D			

