Class : XIIth Date :

(b)

DAILY PRACTICE PROBLEMS

Solutions

Subject : PHYSICS DPP No. : 5

Topic :- RAY OPTICS AND OPTICAL INSTRUMENTS

1

 $m = 1 + \frac{D}{f} = 1 + DP [m \text{ increases with } P]$

2

(d) For first lens, $\mu_1 = -30 cm$, $f_1 = 10 cm$ $\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ or $\frac{1}{v} = \frac{1}{f} + \frac{1}{u}$ or $\frac{1}{v} = \frac{1}{10} - \frac{1}{30} = \frac{1}{15}$ or v = 15 cm

Therefore, image formed by convex lens (L_1) is at point I_1 and acts as virtual object for concave lens (L_2) .

The image I_1 is formed at focus of concave lens (as shown) and so emergent rays will be parallel to the principle axis. For lens L_2 , $\mu_2 = 15-5=10$ cm, $f_2 = -10$ cm. These parallel rays are incident on the third convex lens (L_3) and will be brought to convergence at the focus of the lens (L_3)

Hence , distance of final image from third lens L_3 $v_2 = f_3 = 30 \ cm$

3

For no deviation, $(\mu - 1)A + (\mu' - 1)A' = 0$

$$\Rightarrow A' = -\frac{(\mu - 1)A}{(\mu' - 1)} = \frac{(1.54 - 1)4^{\circ}}{(1.72 - 1)} = -3^{\circ}$$

Negative sign implies that two prisms should be connected in opposition.

4

(b)

When an object is placed in front of such a lens, the rays are first of all refracted from the convex surface and again refracted from convex surface.

Let f_1, f_m be focal lengths of convex surface and mirror (plane polished surface) respectively, then effective focal length is

$$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_m} + \frac{1}{f_1} = \frac{2}{f_1} + \frac{1}{f_m}$$

Since,

$$f_m = \frac{R}{2} = \infty$$
$$\therefore \frac{1}{F} = \frac{2}{f_1}$$

From lens formula

$$\frac{1}{f_1} = (\mu - 1) \left(\frac{1}{R}\right)$$

$$\therefore \frac{1}{F} = \frac{2(\mu - 1)}{R}$$

$$\Rightarrow F = \frac{R}{2(\mu - 1)}$$
or $R_{eq} = 2F = \frac{R}{(\mu - 1)}$
(b)

5

When a ray of light passes from glycerine (denser, $\mu = 1.47$) to water (rarer, $\mu = 1.33$) the angle of refraction (*r*) is greater than angle of incidence (*i*), then from Snell's law

$$\frac{\sin i}{\sin r} = \frac{\mu_2}{\mu_1} < 1$$

When $r = 90^{\circ}$, corresponding angle of incidence is known as critical angel, *ie*, $i = \theta_{C}$

$$\therefore \frac{\sin \theta_C}{\sin 90^\circ} = \frac{\mu_2}{\mu_1}$$
$$\Rightarrow \sin \theta_C = \frac{\mu_2}{\mu_1}$$
$$\Rightarrow \theta_C = \sin^{-1} \left(\frac{\mu_2}{\mu_1}\right)$$
$$= \sin^{-1} \left(\frac{1.33}{1.47}\right)$$

 $\theta_C = 64^{\circ}48'$

(a)

(a)

(a)

(b)

(c)

6 **(b)**

Note that two refractive indices are involves. Therefore, two images will be formed

9

Image formed by convex mirror is virtual for real object placed anywhere

10

Wavelength in vacuum,

$$\lambda = \frac{3 \times 10^8}{5 \times 10^{14}} \times 10^{10} \text{\AA} = 0.6 \times 10^4 \text{\AA}$$

= 6000 \mathcal{A}
Now, $\mu = \frac{\lambda}{\lambda'}$
Or $\lambda' = \frac{\lambda}{\mu} = \frac{6000}{1.5} \text{\AA} = 4000 \text{\AA}$

11

When two lenses are separated by some distance *x*, then equivalent power

$$P = P_1 + P_2 - xP_1P_2$$

$$\therefore P = 5 + 5 - x \times 5 \times 5$$

or $P = 10 - 25x$
Power P will be negative, if 10-25x will be negative
ie, $25x > 10$
or $x > \frac{10}{25}$
or $x > \frac{10}{25} \times 100$ cm
or $x > 40$ cm

14

Since rays after passing through the glass slab just suffer lateral displacement hence we have angle between the emergent rays as α

 $\delta \propto (\mu - 1) \Rightarrow \mu_R$ is least so δ_R is least

16 **(a)**

The combined focal length of plano-convex lens

$$\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2}$$

Given, $f_1 = \infty$ (for plane surface), $f_2 = f(say)$
 $\therefore \frac{1}{F} = \frac{1}{\infty} + \frac{1}{f}$

 $\Longrightarrow F = f$

Now when concave lens of same focal length is joined to first lens , then combined focal length

$$\frac{1}{F'} = \frac{1}{F_1} + \frac{1}{F_2}$$

= $\frac{1}{f} - \frac{1}{f}$ (:: $F_1 = f, F_2 = -f$)
= 0
 $F' = \infty$

Thus, the image can be focused on infinity (∞) or focus shifts to infinity.

17

(b)

(a)

(a)

In compound microscope objective forms real image while eye piece forms virtual image

18

For viewing far objects, concave lenses are used and for concave lens

u = wants to see = -60 cm; v = can see = -15 cm so from $\frac{1}{f} = \frac{1}{v} - \frac{1}{u} \Rightarrow f = -20 cm$

19

According to New Cartesian sign convention,

Object distance $u = -15 \ cm$

Focal length of a concave lens, $f = -10 \ cm$ Height of the object $h_o = 2.0 \ cm$

According to mirror formula, $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$

$$\frac{1}{v} = \frac{1}{f} - \frac{1}{u} = \frac{1}{-10} - \frac{1}{-15} \Rightarrow v = -30 \ cm$$

This image is formed 30 cm from the mirror on the same side of the object. It is a real image

Magnification of the mirror, $m = \frac{-v}{u} = \frac{h_l}{h_0}$

$$\Rightarrow \frac{-(-30)}{-15} = \frac{h_I}{2} \Rightarrow h_I = -4 \ cm$$

Negative sign shows that image is inverted

The image is real, inverted, of size 4 cm at a distance 30 cm in front of the mirror

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	В	D	С	В	В	В	D	С	A	A
Q.	11	12	13	14	15	16	17	18	19	20
A.	А	С	В	В	С	А	В	А	A	D

