Class : XIIth
Solutions

Topic :- RAY OPTICS AND OPTICAL INSTRUMENTS

1

The image I_{1} is formed at focus of concave lens (as shown) and so emergent rays will be parallel to the principle axis. For lens $L_{2}, \mu_{2}=15-5=10 \mathrm{~cm}, f_{2}=-10 \mathrm{~cm}$. These parallel rays are incident on the third convex lens $\left(L_{3}\right)$ and will be brought to convergence at the focus of the lens (L_{3})
Hence, distance of final image from third lens L_{3}
$v_{2}=f_{3}=30 \mathrm{~cm}$
3
(c)

For no deviation,
$(\mu-1) A+\left(\mu^{\prime}-1\right) A^{\prime}=0$
$\Rightarrow A^{\prime}=-\frac{(\mu-1) A}{\left(\mu^{\prime}-1\right)}=\frac{(1.54-1) 4^{\circ}}{(1.72-1)}=-3^{\circ}$
Negative sign implies that two prisms should be connected in opposition.
(b)

When an object is placed in front of such a lens, the rays are first of all refracted from the convex surface and again refracted from convex surface.
Let f_{1}, f_{m} be focal lengths of convex surface and mirror (plane polished surface)
respectively, then effective focal length is
$\frac{1}{F}=\frac{1}{f_{1}}+\frac{1}{f_{m}}+\frac{1}{f_{1}}=\frac{2}{f_{1}}+\frac{1}{f_{m}}$
Since,
$f_{m}=\frac{R}{2}=\infty$
$\therefore \frac{1}{F}=\frac{2}{f_{1}}$
From lens formula
$\frac{1}{f_{1}}=(\mu-1)\left(\frac{1}{R}\right)$
$\therefore \frac{1}{F}=\frac{2(\mu-1)}{R}$
$\Rightarrow F=\frac{R}{2(\mu-1)}$
or $R_{e q}=2 F=\frac{R}{(\mu-1)}$
(b)

When a ray of light passes from glycerine (denser, $\mu=1.47$) to water (rarer, $\mu=1.33$) the angle of refraction (r) is greater than angle of incidence (i), then from Snell's law
$\frac{\sin i}{\sin r}=\frac{\mu_{2}}{\mu_{1}}<1$
When $r=90^{\circ}$, corresponding angle of incidence is known as critical angel, $i e, i=\theta_{C}$

$$
\begin{aligned}
& \therefore \frac{\sin \theta_{C}}{\sin 90^{\circ}}=\frac{\mu_{2}}{\mu_{1}} \\
& \Rightarrow \sin \theta_{C}=\frac{\mu_{2}}{\mu_{1}}
\end{aligned}
$$

$$
\Rightarrow \theta_{C}=\sin ^{-1}\left(\frac{\mu_{2}}{\mu_{1}}\right)
$$

$$
=\sin ^{-1}\left(\frac{1.33}{1.47}\right)
$$

$\theta_{C}=64^{\circ} 48^{\prime}$
(b)

Note that two refractive indices are involves. Therefore, two images will be formed
(a)

Image formed by convex mirror is virtual for real object placed anywhere
(a)

Wavelength in vacuum,
$\lambda=\frac{3 \times 10^{8}}{5 \times 10^{14}} \times 10^{10} \AA=0.6 \times 10^{4} \AA$
$=6000 \AA$
Now, $\mu=\frac{\lambda}{\lambda^{\prime}}$
Or $\lambda^{\prime}=\frac{\lambda}{\mu}=\frac{6000}{1.5} \AA=4000 \AA$
(a)

When two lenses are separated by some distance x, then equivalent power
$P=P_{1}+P_{2}-x P_{1} P_{2}$
$\therefore P=5+5-x \times 5 \times 5$
or $P=10-25 x$
Power P will be negative, if $10-25 \mathrm{x}$ will be negative
ie, $25 x>10$
or $x>\frac{10}{25}$
or $x>\frac{10}{25} \times 100 \mathrm{~cm}$
or $x>40 \mathrm{~cm}$
(b)

Since rays after passing through the glass slab just suffer lateral displacement hence we have angle between the emergent rays as α

(c)
$\delta \propto(\mu-1) \Rightarrow \mu_{R}$ is least so δ_{R} is least
(a)

The combined focal length of plano-convex lens
$\frac{1}{F}=\frac{1}{f_{1}}+\frac{1}{f_{2}}$
Given, $f_{1}=\infty$ (for plane surface), $f_{2}=f($ say $)$
$\therefore \frac{1}{F}=\frac{1}{\infty}+\frac{1}{f}$

$$
\Rightarrow F=f
$$

Now when concave lens of same focal length is joined to first lens, then combined focal length

$$
\begin{aligned}
& \frac{1}{F^{\prime}}=\frac{1}{F_{1}}+\frac{1}{F_{2}} \\
& =\frac{1}{f}-\frac{1}{f} \quad\left(\because F_{1}=f, F_{2}=-f\right) \\
& =0 \\
& F^{\prime}=\infty
\end{aligned}
$$

Thus, the image can be focused on infinity (∞) or focus shifts to infinity.
(b)

In compound microscope objective forms real image while eye piece forms virtual image

For viewing far objects, concave lenses are used and for concave lens
$u=$ wants to see $=-60 \mathrm{~cm} ; v=$ can see $=-15 \mathrm{~cm}$ so from $\frac{1}{f}=\frac{1}{v}-\frac{1}{u} \Rightarrow f=-20 \mathrm{~cm}$
(a)

According to New Cartesian sign convention,
Object distance $u=-15 \mathrm{~cm}$
Focal length of a concave lens, $f=-10 \mathrm{~cm}$
Height of the object $h_{o}=2.0 \mathrm{~cm}$
According to mirror formula, $\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$
$\frac{1}{v}=\frac{1}{f}-\frac{1}{u}=\frac{1}{-10}-\frac{1}{-15} \Rightarrow v=-30 \mathrm{~cm}$
This image is formed 30 cm from the mirror on the same side of the object. It is a real image
Magnification of the mirror, $m=\frac{-v}{u}=\frac{h_{I}}{h_{o}}$
$\Rightarrow \frac{-(-30)}{-15}=\frac{h_{I}}{2} \Rightarrow h_{I}=-4 \mathrm{~cm}$
Negative sign shows that image is inverted
The image is real, inverted, of size 4 cm at a distance 30 cm in front of the mirror

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	B	D	C	B	B	B	D	C	A	A		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	A	C	B	B	C	A	B	A	A	D		

