Class: XIIth
Solutions

Topic :- RAY OPTICS AND OPTICAL INSTRUMENTS

1
(d)

Let focal length of convex lens is $+f$ then focal length of concave lens would be $-\frac{3}{2} f$.
From the given condition,
$\frac{1}{30}=\frac{1}{f}-\frac{2}{3 f}=\frac{1}{3 f}$
$\therefore f=10 \mathrm{~cm}$
Therefore, focal length of convex lens $=+10 \mathrm{~cm}$ and that of concave lens $=-15 \mathrm{~cm}$.
2 (d)
Semi-vertical angle $=$ critical angle
Hence, $i_{C}=\sin ^{-1}\left(\frac{1}{1.33}\right)=48.75 \approx 49^{\circ}$
(c)

As $\frac{1}{f}=(\mu-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
$\therefore \frac{1}{20}=(1.5-1)\left(\frac{1}{\infty}-\frac{1}{R}\right)$
$\frac{1}{20}=\frac{-1}{2 R}, R=-10 \mathrm{~cm}$
Refraction from rarer to denser medium
$-\frac{\mu_{1}}{u}+\frac{\mu_{2}}{v}=\frac{\mu_{2}-\mu_{1}}{R}$, where $u=\infty, v=f$
$\therefore 0+\frac{1.5}{f}=\frac{1.5-1}{10}=\frac{1}{20}, f=30 \mathrm{~cm}$
(c)
$\frac{I_{1}}{o}=\frac{v}{u}$ and $\frac{I_{2}}{O}=\frac{u}{v} \Rightarrow O^{2}=I_{1} I_{2}$
(a)

The focal length of combination is
$\frac{1}{F}=\frac{1}{f_{1}}+\frac{1}{f_{2}}$
Given, $f_{1}=50 \mathrm{~cm}, f_{2}=50 \mathrm{~cm}$
$\therefore \frac{1}{F}=\frac{1}{50}+\frac{1}{50}=\frac{2}{50}$
$\Rightarrow F=\frac{50}{2}=25 \mathrm{~cm}$
Object when placed at center of curvature forms a real, inverted image of same size as object $=(2 \times 25=50 \mathrm{~cm})$
(d)
$L=v_{0}+f_{e} \Rightarrow v_{0}=L-f_{e}$
Or $v_{0}=19.2 \mathrm{~cm}$
$\frac{1}{19.2}-\frac{1}{u_{0}}=\frac{1}{1.6}$
Or $-\frac{1}{u_{o}}=\frac{10}{16}-\frac{10}{192}$
Or $-\frac{1}{u_{o}}=\frac{120-10}{192}=\frac{100}{192}$
Or $u_{o}=-\frac{192}{110} \mathrm{~cm}=-1.75 \mathrm{~cm}$
(c)
$m=\frac{f_{o}}{f_{e}}\left(1+\frac{f_{e}}{D}\right)$
(d)

(a)

Biconvex lens is cut perpendicularly to the principle axis, it will become a plano-convex lens.
Focal length of biconvex lens
$\frac{1}{f}=(n-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
$\frac{1}{f}=(n-1) \frac{2}{R} \quad\left(\because R_{1}=R, R_{2}=-R\right)$
$\Rightarrow f=\frac{R}{2(n-1)}$
For plano-convex lens
$\frac{1}{f_{1}}=(n-1)\left(\frac{1}{R}-\frac{1}{\infty}\right)$
$f^{1}=\frac{R}{(n-1)}$
Comparing Eqs. (i) and (ii), we see that focal length becomes double.
Power of lens $\mathrm{P} \propto \frac{1}{\text { focal length }}$
Hence, power will become half.
New power $=\frac{4}{2}=2 \mathrm{D}$
(c)

After critical angle reflection will be 100% and transmission is 0%. Options (b) and (c) satisfy this condition. But option (c) is the correct option. Because in option (b) transmission is given 100% at $\theta=0^{\circ}$, which is not true
\therefore Correct answer is (c).
(a)

Given that, the refractive index of the lens wrt air,
${ }_{a} \mu_{w}=1.60$
And the refractive index of water wrt air ${ }_{a} \mu_{w}=1.33$
The focal length of the lens in air, $f=20 \mathrm{~cm}$
We know that for a lens
$\frac{1}{f}=(\mu-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
When the lens is in the air
$\frac{1}{20}=\left({ }_{a} \mu_{g}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
or $\frac{1}{20}=(1.60-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
or $\frac{1}{20}=0.60 \times\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
When the lens is in the water
$\frac{1}{f^{\prime}}=\left({ }_{w} \mu_{g}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
or $\frac{1}{f^{\prime}}=\left(\frac{{ }^{\prime} \mu_{g}}{{ }_{a} \mu_{w}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
or $\frac{1}{f^{\prime}}=\left(\frac{{ }_{a} \mu_{g}-{ }_{a} \mu_{w}}{{ }_{a} \mu_{w}}\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
$\therefore \frac{1}{f^{\prime}}=\left(\frac{1.60-1.33}{1.33}\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
or $\frac{1}{f^{\prime}}=\frac{27}{133}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
On dividing Eq. (i) by Eq. (ii), we get
$\frac{f^{\prime}}{20}=\frac{0.60 \times 1.33}{27}$
or $f^{\prime}=20 \times 2.95 \mathrm{~cm} \approx 60 \mathrm{~cm}$

20
(c)

Frequency remain unchanged
(b)

At point A, by Snell's law
$\mu=\frac{\sin 45}{\sin r} \Rightarrow \sin r=\frac{1}{\mu \sqrt{2}}$
At point B, for total internal reflection $\sin i_{1}=\frac{1}{\mu}$

From figure, $i_{1}=90-r$
$\therefore \sin \left(90^{\circ}-r\right)=\frac{1}{\mu}$
$\Rightarrow \cos r=\frac{1}{\mu}$

Now $\cos r=\sqrt{1-\sin ^{2} r}=\sqrt{1-\frac{1}{2 \mu^{2}}}$
$=\sqrt{\frac{2 \mu^{2}-1}{2 \mu^{2}}}$
From equation (ii) and (iii), $\frac{1}{\mu}=\sqrt{\frac{2 \mu^{2}-1}{2 \mu^{2}}}$
Squaring both side and then solving, we get $\mu=\sqrt{\frac{3}{2}}$
(c)
$\mu_{\text {air }}<\mu_{\text {lens }}<\mu_{\text {water }}$ i.e., $1<\mu_{\text {lens }}<1.33$
(c)

In minimum deviation position $\angle i_{1}=\angle i_{2}$ and $\angle r_{1}=\angle r_{2}$
(a)
$I=\frac{L}{r^{2}}$
(d)
$\frac{{ }_{a} \mu_{r}}{{ }_{w} \mu_{r}}=\frac{\mu_{r} / \mu_{a}}{\mu_{r} / \mu_{w}}=\frac{\mu_{w}}{\mu_{a}}={ }_{a} \mu_{w}$

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	D	D	C	C	A	D	C	D	C	D			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	A	C	B	A	C	B	C	C	A	D			

