

CLASS: XIIth DATE:

**SUBJECT: CHEMISTRY** 

**DPP NO.: 4** 

## Topic :-REDOX REACTIONS

| <ol> <li>When a sulphur atom becomes a sulphide ion:         <ul> <li>a) It gains two electrons</li> <li>b) The mass number changes</li> <li>c) There is no change in the composition of atom</li> <li>d) None of the above</li> </ul> </li> <li>Titre value is the volume of titrant used for a definite amount of unknown reagent at its:         <ul> <li>a) Equivalence point</li> <li>b) End point</li> <li>c) Neutralization point</li> <li>d) All of these</li> </ul> </li> <li>Oxidation states of X,Y,Z are +2, +5 and -2 respectively. Formula of the compound formed by these wii be         <ul> <li>a) X<sub>2</sub>YZ<sub>6</sub></li> <li>b) XY<sub>2</sub>Z<sub>6</sub></li> <li>c) XY<sub>5</sub></li> <li>d) X<sub>3</sub>YZ<sub>4</sub></li> </ul> </li> <li>In which compound, oxygen has an oxidation state of +2?         <ul> <li>a) H<sub>2</sub>O<sub>2</sub></li> <li>b) H<sub>2</sub>O</li> <li>c) OF<sub>2</sub></li> <li>d) CO</li> </ul> </li> <li>If equal volumes of 1M KMnO<sub>4</sub> and 1 M K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> solutions are allowed to oxidise F<sup>2+</sup> to F<sup>3+</sup> in acidic medium volume of oxidant required for one mole of F<sup>2+</sup> will be:         <ul> <li>a) V<sub>KMnO<sub>4</sub></sub> &gt; V<sub>K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub></sub></li> <li>b) V<sub>KMnO<sub>4</sub></sub> &lt; V<sub>K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub></sub></li> <li>c) V<sub>K</sub> = V<sub>K</sub></li> </ul> </li> </ol> |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| a) Equivalence point b) End point c) Neutralization point d) All of these  3. Oxidation states of $X,Y,Z$ are $+2$ , $+5$ and $-2$ respectively. Formula of the compound formed by these wii be  a) $X_2YZ_6$ b) $XY_2Z_6$ c) $XY_5$ d) $X_3YZ_4$ 4. In which compound, oxygen has an oxidation state of $+2$ ?  a) $H_2O_2$ b) $H_2O$ c) $OF_2$ d) $CO$ 5. If equal volumes of $1M$ KMn $O_4$ and $1M$ K $_2Cr_2O_7$ solutions are allowed to oxidise $F^{2+}$ to $F^{3+}$ in acidic medium volume of oxidant required for one mole of $F^{2+}$ will be:  a) $V_{KMnO_4} > V_{K_2Cr_2O_7}$ b) $V_{KMnO_4} < V_{K_2Cr_2O_7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| these wii be $a) X_2 Y Z_6 \qquad b) X Y_2 Z_6 \qquad c) X Y_5 \qquad d) X_3 Y Z_4$ 4. In which compound, oxygen has an oxidation state of $+2$ ? $a) H_2 O_2 \qquad b) H_2 O \qquad c) OF_2 \qquad d) CO$ 5. If equal volumes of $1M \text{ KMnO}_4$ and $1M \text{ K}_2 \text{Cr}_2 O_7$ solutions are allowed to oxidise $F^{2+}$ to $F^{3+}$ in acidic medium volume of oxidant required for one mole of $F^{2+}$ will be : $a) V_{\text{KMnO}_4} > V_{\text{K}_2 \text{Cr}_2 O_7}$ $b) V_{\text{KMnO}_4} < V_{\text{K}_2 \text{Cr}_2 O_7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| <ul> <li>a) X<sub>2</sub>YZ<sub>6</sub></li> <li>b) XY<sub>2</sub>Z<sub>6</sub></li> <li>c) XY<sub>5</sub></li> <li>d) X<sub>3</sub>YZ<sub>4</sub></li> <li>4. In which compound, oxygen has an oxidation state of +2? <ul> <li>a) H<sub>2</sub>O<sub>2</sub></li> <li>b) H<sub>2</sub>O</li> <li>c) OF<sub>2</sub></li> <li>d) CO</li> </ul> </li> <li>5. If equal volumes of 1M KMnO<sub>4</sub> and 1 M K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> solutions are allowed to oxidise F<sup>2+</sup> to F<sup>3+</sup> in acidic medium volume of oxidant required for one mole of F<sup>2+</sup> will be: <ul> <li>a) V<sub>KMnO<sub>4</sub></sub> &gt; V<sub>K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub></sub></li> <li>b) V<sub>KMnO<sub>4</sub></sub> &lt; V<sub>K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub></sub></li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| a) H <sub>2</sub> O <sub>2</sub> b) H <sub>2</sub> O c) OF <sub>2</sub> d) CO  5. If equal volumes of 1 <i>M</i> KMnO <sub>4</sub> and 1 <i>M</i> K <sub>2</sub> Cr <sub>2</sub> O <sub>7</sub> solutions are allowed to oxidise F <sup>2+</sup> to F <sup>3+</sup> in acidic medium volume of oxidant required for one mole of F <sup>2+</sup> will be:  a) V <sub>KMnO<sub>4</sub></sub> > V <sub>K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> b) V<sub>KMnO<sub>4</sub></sub> &lt; V<sub>K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub></sub></sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| acidic medium volume of oxidant required for one mole of $F^{2+}$ will be :<br>a) $V_{KMnO_4} > V_{K_2Cr_2O_7}$<br>b) $V_{KMnO_4} < V_{K_2Cr_2O_7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| acidic medium volume of oxidant required for one mole of $F^{2+}$ will be :<br>a) $V_{KMnO_4} > V_{K_2Cr_2O_7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 6. How many gram of KMnO <sub>4</sub> should be taken to make up 250 mL of a solution of such strength that 1 mL is equivalent to 5.0 mg of Fe in FeSO <sub>4</sub> ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| a) 1.414 g b) 0.70 g c) 3.16 g d) 1.58 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| 7. The oxidation number of $Cr$ in $K_2CrO_4$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| a) $+3$ b) $-6$ c) $+6$ d) $-3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 268.In the reaction, $2Na_2S_2O_3 + I_2 \longrightarrow Na_2S_4O_6 + 2NaI$ , the oxidation state of sulphur is : a) Decreased b) Increased c) Unchanged d) None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| 9. The equivalent weight of $KMnO_4$ (acidic medium) is (at. wt. of $K = 39$ ; $Mn = 55$ ):  a) 158 b) 15.8 c) 31.6 d) 3.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |

| 10.                    | The oxidation number of chromium in potassium dichromate is                                                  |                                                                           |                                                               |                                        |  |
|------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------|--|
|                        | a) +2                                                                                                        | b)+4                                                                      | c) +6                                                         | d)+8                                   |  |
| 11.                    | The equivalent weight of $MnSO_4$ is half of its molecular weight when it is converted to :                  |                                                                           |                                                               |                                        |  |
|                        | a) $Mn_2O_3$                                                                                                 | b) MnO <sub>2</sub>                                                       | c) MnO <sub>4</sub>                                           | d) Mn <sub>4</sub> <sup>2-</sup>       |  |
| 12.                    | Aqueous solution of $SO_2$ reacts with $H_2S$ to precipitate sulphur. Here $SO_2$ acts as :                  |                                                                           |                                                               |                                        |  |
|                        | a) Catalyst                                                                                                  | b) Reducing agent                                                         | c) Oxidizing agent                                            | d) Acid                                |  |
| 13.                    | Saline hydrides are: a) Strong oxidants b) Strong reductants c) Strong dehydrating a d) Strong bleaching age | •                                                                         |                                                               |                                        |  |
| 14.                    | State the oxidation nuna) 0 and 0                                                                            | nber of carbonyl carbon<br>b) 0 and +2                                    | in methanal and methan $c) +1$ and $+2$                       | noic acid respectively1<br>d)+1 and +3 |  |
| 15.                    | The eq. wt. of $I_2$ in the change $I_2 \rightarrow IO_3^-$ is :                                             |                                                                           |                                                               |                                        |  |
|                        | a) 12.7                                                                                                      | b) 63.5                                                                   | c) 25.4                                                       | d) 2.54                                |  |
| 16.<br>SO <sub>2</sub> | Equivalent mass of $+2H_2S \rightarrow 3S + 2H_2O$                                                           | oxid <mark>izing</mark> agent i <mark>n the</mark> re                     | action is.                                                    |                                        |  |
|                        | a) 32                                                                                                        | b) 64                                                                     | c) 16                                                         | d)8                                    |  |
| 17.                    | In a conjugate pair of real Lower ox.no.                                                                     | educ <mark>tant a</mark> nd oxidant, th<br>b) <mark>Highe</mark> r ox.no. | e reductant has : c) Same ox.no.                              | d) Either of these                     |  |
| 18.                    | In which of the following a) With Li to form LiH                                                             | ng reactions, hydrogen is b) With $I_2$ to give HI                        | s acting as an oxidising a c) With S to give H <sub>2</sub> S | ngent?<br>d) None of the above         |  |
| 19.                    | The number of moles o a) 3                                                                                   | f Mohr's salt required po<br>b) 4                                         | er mole of dichromate ic                                      | on is :<br>d) 6                        |  |
| 20.                    | For reducing one mole a) 2                                                                                   | of Fe <sup>2+</sup> ion to Fe, the nur<br>b) 1                            | nber of faraday of electr<br>c) 1.5                           | ricity is :<br>d) 4                    |  |
|                        |                                                                                                              |                                                                           |                                                               |                                        |  |