

CLASS : XIIth DATE : **SUBJECT : CHEMISTRY DPP NO. : 1**

Topic :-REDOX REACTIONS

- 1. The correct order of reducing power of halide ions is : a) $Cl^- > Br^- > I^- > F^$
 - b) $Cl^- > I^- > Br^- > F^$ c) $Br^- > Cl^- > I^- > F^-$
 - d) $I^- > Br^- > Cl^- > F^-$

2. The reaction, $3\text{ClO}^-(aq) \rightarrow \text{ClO}_3^-(aq) + 2\text{Cl}^-(aq)$ is an example of :

- a) Oxidation reaction
- b) Reduction reaction
- c) Disproportionation reaction
- d) Decomposition reaction
- 3. The ox.no. of S in $Na_2S_4O_6$ is :
 - a) + 2.5
 - b) +2 and +3 (two S have +2 and other two have +3)
 - c) +2 and +3 (three S have +2 and one S has +3)
 - d) +5 and 0 (two S have +5 and the other two S have 0)
- 4. Oxidation is a process which involves :a) de-electronationb) Electronation

c) Addition of hydrogend) Addition of metal

5. A student states that heating of limestone is an oxidation process, the reason he gives that an oxide of the metal is produced on heating. Which one is correct?

- a) The statement and reason are true
- b) The statement and reason are wrong
- c) The statement is true but the reason is false
- d) None of the above
- 7. KMnO4 acts as indicator in its redox titrations.a) Selfb) Externalc) Internald) Not an
- 8. In a reaction between zinc and iodine in which zinc iodide is formed, which is oxidised?

9	a) Zinc ions The best oxidising age	b) lodide ions nt of the oxygen family i	c) Zinc atom s:	d)Iodine				
	a) Tellurium	b) Selenium	c) Sulphur	d)Oxygen				
10.	The oxidation state of	iron in sodium nitroprus	sside is :					
	a) +2	b)+1	c) Zero	d)+3				
11. :	A compound of Xe and F is found to have 53.3% Xe. Oxidation number of Xe in this compound is							
	a) -4	b)Zero	c) +4	d)+6				
12.	 2. Which combination is odd with respect to oxidation numbers of S, Cr, N and H respectively: a) H₂SO₅, H₂S₂O₈, H₂SO₄, SF₆ b) K₂Cr₂O₇, K₂CrO₄, CrO₅, CrO₂Cl₂ c) NH₃, NH⁴₄, N₃H, NO⁻²/₂ d) CaH₂, NaH, LiH, MgH₂ 							
13. Pur	13. 0.2 g of a sample of H_2O_2 required 10 mL of <i>N</i> KMnO ₄ in a titration in the presence of H_2SO_4 .							
I UI	a) 25%	b)85%	c) 65%	d)95%				
14. When KMnO ₄ as oxidising agent and ultimately forms MnO_4^{2-} , Mn_2O_3 and Mn^{2+} , the number of electrons transferred per mole of KMnO ₄ each case respectively is :								
	a) 4, 3, 1, 5	b) 1, 5, 3, 7	c) 1, 3, 4, 5	d) 1, 3, 8, 5				
15.	Titration of KI with H ₂ a) Clock reaction	O ₂ in presence of acid is b) Redox reaction	a : c) Intermolecular redo	oxd)All of these				
16. Oxidation state of nitrogen is incorrectly given for :								
Cor	npound	Oxidation state						
	a) [Co(NH ₃) ₅ Cl]Cl ₂	-3						
	b) NH ₂ OH	-1						
	c) $(N_2H_5)_2SO_4$	+2						
	d) Mg_3N_2	-3						
 17. Fluorine exhibits only -1 oxidation state, while iodine exhibits oxidation states of -1, +1, +3, +5 and +7. This is due to : a) Fluorine being a gas b) Available dorbitals in iodine 								
	c) Non-availability of <i>d</i> -orbitals in iodine d) None of the above							
18. Elements which generally exhibit multiple oxidation states and whose ions are coloured are								
KII	a) Metalloid	b)Non-metals	c) Metals	d)Transition metals				

PRERNA EDUCATION

19.	The oxidation state of sulphur in sodium tetrathionate $(Na_2S_4O_6)$ is				
	a) 2	b)0	c) 2.5	d) 3.5	
		2	2	2	
20.). Which is strongest oxidising agent?				
	a) 0 ₃	b) 0 ₂	c) Cl ₂	d)F ₂	

