

CLASS : XIIth DATE :

SOLUTION

SUBJECT : CHEMISTRY DPP NO. : 8

Topic :-redox reactions

1 (d) It is a fact. 2 (d) Al \rightarrow Al³⁺ + 3*e* Thus, 27 g Al forms Al^{3+} by losing 3*N* electrons : 13.5 g Al will lose $\frac{3N \times 13.5}{27} = \frac{3}{2}N$ electrons (c) 3 $a + 2 \times 1 + 2 \times (-1) = 0$ $\therefore a = 0$ 4 (a) Mn has +7 oxidation state in KMnO₄. 1 + x + 4(-2) = 01 + x - 8 = 0*x* = +7 5 (a) Minimum ox.no. = group no. -8. Maximum ox.no. = group no. 6 (b) H possesses negative one value of oxidation number in ionic hydrides. 7 (c) Due to -ve oxidation number it should be non-metal having six electrons in outer shell. 8 (d) These are characteristics of indicator. 9 (b) The oxidation state of Xe in both XeO_2 and XeF_4 is 4. XeO₂ XeF₄ x + 2(-2) = 0 x + 4(-1) = 0x = 4 x = 410 (a) Na₃AsO₄ is sodium arsenate Or AsO_4^{-3} is arsenate. Thus, $a + 4 \times (-2) = -3$ $\therefore a = +5$

11 (d) Reduction increase in O.N $Ag^{2^+} + Ag(S) = 2Ag^+$ decrease in O.N. Oxidation

Hence, those reactions in which two or more species undergo oxidation as well as reduction are called comproportionation.

12 (b)
SO₂ + 2H₂S
$$\rightarrow$$
 2H₂O + 3S
13 (c)
Glucose is reducing agent.
14 (b)
 $a + 6 \times (-1) = -3$
 $\therefore a = +3$
15 (b)
It is a fact.
16 (b)
1. Oxidation state of Mn in Mn²⁺ = +2
2. Let oxidation state of Mn in MnO₂ = x
 $\therefore x + (2 \times -2) = 0$
 $\therefore x = +4$

(iii) Let the oxidation state of Mn in $KMnO_4 = x$

$$\therefore \quad +1 + x + (-2 \times 4) = 0$$

$$\therefore x = +7$$

(iv) Let oxidation state of Mn in $K_2MnO_4 = x$

:.
$$(+1 \times 2) + x + (-2 \times 4) = 0$$

$$\therefore x = +6$$

 \therefore Increasing order of oxidation states is

17 **(b)** Meq. of $MnO_2 = Meq.$ of oxalic acid = 0.16 × 35 = 56 $\therefore \frac{w}{87/2} \times 1000 = 5.6$ $w_{MnO_2} = 0.24 g$ 18**(a)** $More is <math>E_{RP}^0$, more is the tendency to get itself reduced or more is oxidising power. 19 **(a)** Meq. of KMnO_4 = 3750 × 0.85 $\therefore \frac{w}{31.6} \times 1000 = 3750 \times 0.85$ $\therefore w = 100.7 g$ 20**(c)** $Mn⁷⁺ + 5e <math>\rightarrow$ Mn²⁺

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	D	D	С	А	А	В	С	D	В	А
Q.	11	12	13	14	15	16	17	18	19	20
A.	D	В	С	В	В	В	В	А	А	С

