CLASS : XIIth

SOLUTION

Topic :-REDOX REACTIONS

1
(d)
$6 \times a+12 \times 1+6 \times(-2)=0$
$\therefore a=0$
2 (b)
$\mathrm{Mn}^{7+}+5 e \longrightarrow \mathrm{Mn}^{2+}$
3 (a)
$2 \times 2+2 \times a+7 \times(-2)=0$
$\therefore a=+5$
4 (c)
Eq. of $\mathrm{Cl}_{2}=$ eq. of chloride
$1 \times 2=\frac{111}{E+35.5}$
$\therefore E=40$
$\therefore M=40 \times 2=80$ (Metal is bivalent.)
5 (b)

It is chromium peroxide.
Let the oxidation number of Cr is " x ".
$\mathrm{Cr}^{x+}+\mathrm{O}_{2}^{-}+\mathrm{O}^{2-}+\mathrm{O}_{2}^{-}-\mathrm{CrO}_{5}$
$x+(-1) 2+(-1) 2+(-2) 1=0$
$x-6=0$
$x=+6$
Hence, the oxidation state of Cr is +6 .
6
(d)

Haematite is $\mathrm{Fe}_{2} \mathrm{O}_{3}$, in which oxidation number of iron is III.
Magnetite is $\mathrm{Fe}_{3} \mathrm{O}_{4}$ which is infact a mixed oxide ($\mathrm{FeO} . \mathrm{Fe}_{2} \mathrm{O}_{3}$.), hence iron is present in both II and III oxidation state.
(c)
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+2 \mathrm{KOH} \rightarrow 2 \mathrm{~K}_{2} \mathrm{CrO}_{4}$
(red-orange) (lemon-yellow)
8 (a)
In basic medium
$2 \mathrm{KMnO}_{4}+2 \mathrm{KOH} \rightarrow 2 \mathrm{~K}_{2} \mathrm{MnO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}$
Net reaction is

$$
\mathrm{MnO}_{4}^{-7} \rightarrow \mathrm{MnO}_{4}^{+6}
$$

Change in oxidation number
$=7-6=+1$
So, electrons involved $=1 e^{-}$
9
(a)

In $\mathrm{NH}_{4}^{+}, \mathrm{N}$ has ox.no. -3 and in $\mathrm{NO}_{3}^{-}, \mathrm{N}$ has ox.no. +5 .
10
(c)
$a+6 \times(-1)=-2$
$\therefore a=+4$
11
(c)
$1+1 \times(-2)+a=0$
$\therefore a=+1$
12
(a)
$e+\mathrm{N}^{5+} \rightarrow \mathrm{N}^{4+}$; Thus, HNO_{3} is oxidant.
13
(a)
$\mathrm{H}^{0} \rightarrow \mathrm{H}^{1+}+\mathrm{l} e$.
314 (d)
$\mathrm{S}^{\mathrm{O}} \mathrm{SO}_{2} \xrightarrow{\mathrm{Cl}_{2}} \mathrm{SO}_{4}^{2} \xrightarrow{\mathrm{BaCl}_{2}} \mathrm{BaSO}_{4}$ One mole of S will give one mole of BaSO_{4}. Thus, mole of BaSO_{4} formed $=$ mole of $S=\frac{8}{32}=\frac{1}{4}$
15
(d)
$\left[\mathrm{Mn}^{7+}+5 e \rightarrow \mathrm{Mn}^{2+}\right] \times 3$
$\left[\mathrm{Fe}^{2+} \mathrm{C}_{2}^{3+} \mathrm{O}_{4} \rightarrow \mathrm{Fe}^{3+}+2 \mathrm{C}^{4+} \mathrm{O}_{2}+3 e\right] \times 5$
16
(c)

Equal equivalent of species react together.
17
(a)

It is a fact.
18 (c)
The balanced disproportionation reaction involving white phosphorus with aq. NaOH is

(b)

F can have only -ve ox.no., i.e., $2 e+\mathrm{F}_{2}^{0} \rightarrow 2 \mathrm{~F}^{1-}$ or F_{2} can be reduced only.
20
(a)
$\left(\mathrm{N}^{0}\right)_{2}+6 e \rightarrow 2\left(\mathrm{~N}^{3-}\right)$ $3\left(\mathrm{H}^{0}\right)_{2} \rightarrow 2\left(\mathrm{H}^{+1}\right)_{3}+6 e$
$\mathrm{E}_{\mathrm{N}_{2}}=\frac{28}{6} ; \mathrm{E}_{\mathrm{NH}_{3}}=\frac{17}{3}$

| ANSWER-KEY | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Q. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| A. | D | B | A | C | B | D | C | A | A | C |
| | | | | | | | | | | |
| Q. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| A. | C | A | A | D | D | C | A | C | B | A |
| | | | | | | | | | | |

