

CLASS : XIIth DATE :

SOLUTION

SUBJECT : CHEMISTRY DPP NO. : 6

Topic :-redox reactions

(d) 1 $6 \times a + 12 \times 1 + 6 \times (-2) = 0$ $\therefore a = 0$ 2 **(b)** $Mn^{7+} + 5e \rightarrow Mn^{2+}$ 3 (a) $2 \times 2 + 2 \times a + 7 \times (-2) = 0$ $\therefore a = +5$ 4 (c) Eq. of $Cl_2 = eq.$ of chloride $1 \times 2 = \frac{111}{E + 35.5}$ $\therefore E = 40$ $\therefore M = 40 \times 2 = 80$ (Metal is bivalent.) 5 **(b)** \cap It is chromium peroxide. Let the oxidation number of Cr is ''x''. $Cr^{x+} + O_2^- + O^{2-} + O_2^- - CrO_5$ x + (-1)2 + (-1)2 + (-2)1 = 0x - 6 = 0x = +6Hence, the oxidation state of Cr is +6. 6 (d) Haematite is Fe_2O_3 , in which oxidation number of iron is III.

Magnetite is Fe_3O_4 which is infact a mixed oxide (FeO.Fe₂O₃.), hence iron is present in both II and III oxidation state.

7 (c) $K_2Cr_2O_7 + 2KOH \rightarrow 2K_2CrO_4$ (red-orange) (lemon-yellow) 8 (a) In basic medium $2KMnO_4 + 2KOH \rightarrow 2K_2MnO_4 + H_2O + O$ Net reaction is +7 +6 $MnO_4^- \rightarrow MnO_4^{-2}$ Change in oxidation number =7 - 6 = +1So, electrons involved $=1e^{-1}$ 9 (a) In NH_4^+ , N has ox.no. -3 and in NO_3^- , N has ox.no. +5. 10 (c) $a + 6 \times (-1) = -2$ $\therefore a = +4$ 11 (c) $1 + 1 \times (-2) + a = 0$ $\therefore a = +1$ 12 **(a)** $e + N^{5+} \rightarrow N^{4+}$; Thus, HNO₃ is oxidant. 13 (a) $H^0 \rightarrow H^{1+} + le.$ 314 **(d)** $S \rightarrow SO_2 \rightarrow SO_4^2 \rightarrow BaSO_4One$ mole of S will give one mole of BaSO₄. Thus, mole of BaSO₄ formed = mole of S = $\frac{8}{32} = \frac{1}{4}$ 15 (d) $\left[\mathrm{Mn}^{7+} + 5e \longrightarrow \mathrm{Mn}^{2+}\right] \times 3$ $[Fe^{2+}C_2^{3+}O_4 \rightarrow Fe^{3+} + 2C^{4+}O_2 + 3e] \times 5$ 16 (c) Equal equivalent of species react together. 17 (a) It is a fact. 18 (c) The balanced disproportionation reaction involving white phosphorus with aq. NaOH is Oxidation of P^0 to P^{+1} state

 $P_{4}^{0} + 3NaOH + 3H_{2}O \longrightarrow PH_{3} + 3NaH_{2}PO_{2}$ Reduction of P^{0} to P^{-3} state 19 **(b)** F can have only -ve ox.no., *i.e.*, $2e + F_2^0 \rightarrow 2F^{1-}$ or F_2 can be reduced only. 20 **(a)** $(N^0)_2 + 6e \rightarrow 2(N^{3-})$ $3(H^0)_2 \rightarrow 2(H^{+1})_3 + 6e$ $E_{N_2} = \frac{28}{6}; E_{NH_3} = \frac{17}{3}$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	D	В	А	С	В	D	С	А	А	С
Q.	11	12	13	14	15	16	17	18	19	20
A.	C	A	А	D	D	C	А	C	В	А

