

CLASS : XIIth DATE :

SOLUTION

SUBJECT : CHEMISTRY DPP NO. : 4

Topic :-redox reactions

1 (a) $S + 2e \rightarrow S^{2-}$. 2 (d) All terms have same meaning. 3 (b)

The sum of the oxidation states is always zero in neutral compound. The oxidation state of *X*,*Y*, and *Z* are +2, +5 and -2 respectively.

1. In X_2YZ_6

 $2 \times 2 + 5 + 6(-2) \neq 0$

2. In XY_2Z_6

 $2 + 5 \times 2 + 6(-2) = 0$

3. $\ln XY_5$

 $2+5 \times 5 \neq 0$

4. In X_3YZ_4

 $3 \times 2 + 5 + 4(-2) \neq 0$

Hence, the formula of the compound is XY_2Z_6 .

4 (c) F is most electronegative element and thus, has -1 ox.no. Thus, a + (-2) = 0 $\therefore a = +2$ 5 (a) $Mn^{7+} + 5e \rightarrow Mn^{2+}$ $(Cr^{6+})_2 + 6e \rightarrow 2Cr^{3+}$ $Fe^{2+} \rightarrow Fe^{3+} + e$ Meq. of $Fe^{2+} = Meq$. of $KMnO_4 = Meq$. of $K_2Cr_2O_7$ $1 \times 5 \times V_{KMnO_4} = 1 \times 6 \times V_{K_2Cr_2O_7}$

 $:: V_{\rm KMnO_4} = \frac{6}{5} V_{\rm K_2Cr_2O_7}$ 6 **(b)** Meq. of KMnO₄ in 1 mL = Meq. of Fe = $\frac{5 \times 10^{-3}}{56/1} \times 10^{3}$ $\therefore \text{ Meq. if KMnO}_4 \text{ in } 250 \text{ mL} = \frac{5 \times 250}{56/1}$ Thus, $\frac{w}{31.6} \times 1000 = \frac{5 \times 250}{56/1} = 0.7$ g 7 (c) Let the oxidation number of Cr in K_2CrO_4 is x. 2(+1) + x + 4(-2) = 02 + x - 8 = 0*x* = +6 8 (b) $2S_2^{2+} \rightarrow S_4^{5/2} + 2e$ 9 (c) $Mn^{7+} + 5e \rightarrow Mn^{2+}$ $\therefore E = M/5$ 10 (c) Let the oxidation number of Cr be x \therefore For K₂Cr₂O₇ $+1 \times 2 + 2x + 7(-2) = 0$ 2 + 2x - 14 = 02x = 12x = 611 **(b)** $Mn^{2+} \rightarrow Mn^{4+} + 2e$ 12 (c) $S^{4+} + 4e \rightarrow S^0$; SO_2 is reduced and thus, oxidant. 13 **(b)** $2H^{-}\rightarrow H_{2} + 2e$ 14 **(b)** Let the oxidation number of carbonyl carbon in methanal (HCHO) and methanoic acid (HCOOH) is *x* and *y* is respectively. In HCHO, 2(+1) + x + (-2) = 02 + x - 2 = 0x = 0In HCOOH, 2(+1) + y + 2(-2) = 02 + y - 4 = 0y = 2

15 (c) $I_2^0 \rightarrow 2I^{5+} + 10e$ $\therefore E = \frac{M}{10} = \frac{254}{10} = 25.4$ 16 (c) $4e + S^{4+} \rightarrow S^0$ $\therefore E_{SO_2} = \frac{64}{4} = 16$ (a) 17 $M^{5+} \rightarrow M^{7+} + 2e; M^{5+}$ is reductant. (a) 18 0 +1 -1

 $Li + H_2 \rightarrow 2LiH$

Oxidation number of hydrogen is decreasing from 0 to -1. So, H_2 is acting as oxidising agent in this reaction.

19 (d)

Mohr's salt is FeSO₄.(NH₄)₂ SO₄.6H₂O

 $Fe^{2+} \rightarrow Fe^{3+} + e \times 6$

 $6e + Cr_2 O_7^{2-} \rightarrow 2Cr^{3+} \times 1$

20 (a)

1 faraday of electricity involves change of one mole electron.

 $Fe^{2+} + 2e \rightarrow Fe$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	A	D	В	С	А	В	С	В	C	С
Q.	11	12	13	14	15	16	17	18	19	20
A.	В	C	В	В	С	С	A	А	D	А

