

CLASS : XIIth DATE :

SOLUTION

SUBJECT : CHEMISTRY DPP NO. : 10

Topic :-redox reactions

(a) 1 Meq. if $SnCl_2 = Meq.$ of $HgCl_2$ $0.5 \times V = 600 \times 0.1$ $\therefore V = 120 \text{ mL}$ 2 (a) Meq. of FeSO₄ = Meq. of KMnO₄ = 200×1 $\therefore \frac{w}{152/1} \times 1000 = 200$ $\therefore w = 30.4 \text{ g}$ 3 (a) Meq. of $Fe = Meq. of K_2Cr_2O_7$ $\frac{1}{56/1} \times 1000 = 1 \times 0.1055$ $w = 5.9 \times 10^{-3} \text{ g} = 5.9 \text{ mg}$:. 4 (d) $\left[\mathrm{Mn}^{7+} + 5e \longrightarrow \mathrm{Mn}^{2+}\right] \times 3$ $Fe^{2+} \rightarrow Fe^{3+} + e$ $(C^{3+})_2 \rightarrow 2C^{4+} + 2e$ $\overline{\left[\operatorname{FeC}_2\operatorname{O}_4 \longrightarrow \operatorname{Fe}^{3+} + 2\operatorname{C}^{4+} + 3e\right] \times 5}$ \therefore 3 mole MnO₄⁻ \equiv 5 mole FeC₂O₄ 5 (c) The sum of oxidation number is zero. 6 (c) Electrons released at anode = Electrons used at cathode. 8 (c) $Cr_2^{6+} + 6e \rightarrow 2Cr^{3+}$ (b) 9 $Mn^{7+} + 5e \rightarrow Mn^{2+}$ $Fe^{2+} \rightarrow Fe^{3+} + e$ 10 (d) Loss of an electron or increase in oxidation number is oxidation process.

 $H^{-} \rightarrow H + e^{-}$ i.e.. 11 (c) Due to inert pair effect which is more predominant in T1. 12 (a) $Fe^{2+} \rightarrow Fe^{3+} + le$ $6e + Cr_2^{6+} \rightarrow 2Cr^{3+}$ Thus, electrons involved per Cr atom = 3. 13 (a) Let oxidation state of Cr in $K_2Cr_2O_7 = x$ $(+1 \times 2) + 2x + (-2 \times 7) = 0$ or +2 + 2x - 14 = 0 $\therefore x = +6$ Let oxidation state of Cr in $K_2CrO_4 = x$ $+1 \times 2 + x + (-2 \times 4) = 0$ 2+x-8=0x = 6: Change in oxidation state of Cr is zero when it changes from $K_2Cr_2O_7$ to K_2CrO_4 . 14 **(b)** In HNO₂, the oxidation number of N is + 3 which is less than the maximum possible, oxidation number ie_{1} + 5 and more than the minimum possible oxidation number ie_{1} - 3, therefore, it can act both as an oxidizing as well as reducing agent 15 (a) Ox. No. of N in N₃H,NH₂OH, N₂H₄, NH₃ are $-\frac{1}{3}$, -1, -2, -3 respectively. 16 (a) $Mn^{6+} \rightarrow Mn^{7+} + Ie$ $Mn^{6+} + 2e \rightarrow Mn^{4+}$ $3MnO_4^{2-} \rightarrow 2MnO_4^{-} + Mn^{4+}$ 17 **(b)** FeCl₃ cannot be oxidised because Fe has highest oxidation state. 18 (d) Meq. of $KMnO_4 = Meq. Of Cl_2$ $1 \times 5 \times 1000 = \frac{w}{(71/2)} \times 1000$: w = 177.5 g $\therefore V_{Cl_2} = 56$ litre at NTP 19 (d) $Fe^{2+} \rightarrow Fe^{3+} + e; 0^{1-}_2 + 2e \rightarrow 20^{2-};$ H_2O_2 acts as oxidant. 20 (b) Let oxidation state of I in IPO₄ = 'x'. x + (-3) = 0

 (PO_4^{3-}) ion has charge equal to -3

x = +3

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	А	А	А	D	С	С	D	С	В	D
Q.	11	12	13	14	15	16	17	18	19	20
A.	C	А	А	В	А	А	В	D	D	В

