CLASS : XITh
研

DATE :

Topic:-OSCILLATIONS

1
(b)

The potential energy, $U=\frac{1}{2} k x^{2}$

$$
2 U=k x^{2}
$$

$$
2 U=-F x \quad(\because F=-k x)
$$

or

$$
\frac{2 U}{F}=-x
$$

or

$$
\frac{2 U}{F}+x=0
$$

(d)
$y=a \sin \left(\omega t+\phi_{0}\right)$. According to the equation
$y=\frac{a}{2} \Rightarrow \frac{a}{2}=a \sin \left(\omega t+\phi_{0}\right) \Rightarrow\left(\omega t+\phi_{0}\right)=\phi=\frac{\pi}{6}$ or $\frac{5 \pi}{6}$
Physical meaning of $\phi=\frac{\pi}{6}$: Particle is at point P and it is going towards B

Physical meaning of $\phi=\frac{5 \pi}{6}$: Particle is at point P and it is going towards O

So phase difference $\Delta \phi=\frac{5 \pi}{6}-\frac{\pi}{6}=\frac{2 \pi}{3}=120^{\circ}$
(c)

Velocity $=$ acceleration

$$
\begin{aligned}
& \omega \sqrt{a^{2}-y^{2}}=\omega^{2} y \\
& \sqrt{(2)^{2}-(1)^{2}}=\omega(1) \\
\Rightarrow & \omega=\sqrt{3} \\
& T=\frac{2 \pi}{\omega} \\
\Rightarrow & T=\frac{2 \pi}{\sqrt{3}}
\end{aligned}
$$

(c)

If amplitude is large motion will not remain simple harmonic
(b)
$v_{\max }=a \omega=a \times \frac{2 \pi}{T}=\left(50 \times 10^{-3}\right) \times \frac{2 \pi}{2}=0.15 \mathrm{~ms}^{-1}$
(d)

The displacement of particle, executing SHM,
$y=5 \sin \left(4 t+\frac{\pi}{3}\right)$
Velocity of particle, $\frac{d y}{d t}=\frac{5 d}{d t} \sin \left(4 t+\frac{\pi}{3}\right)$
$=5 \cos \left(4 t+\frac{\pi}{3}\right) 4=20 \cos \left(4 t+\frac{\pi}{3}\right)$
Velocity at $t=\left(\frac{T}{4}\right)$
$\left(\frac{d y}{d t}\right)_{t=\frac{T}{4}}=20 \cos \left(4 \times \frac{T}{4}+\frac{\pi}{3}\right)$
$\Rightarrow u=20 \cos \left(T+\frac{\pi}{3}\right)$
Comparing the given equation with standard equation of SHM $y=a \sin (\omega t+\phi)$, we get $\omega=4$
As $\omega=\frac{2 \pi}{T} \Rightarrow T=\frac{2 \pi}{\omega} \Rightarrow T=\frac{2 \pi}{4} \Rightarrow T=\left(\frac{\pi}{2}\right)$
Now, putting value of T in Eq. (ii), we get

$$
\begin{aligned}
& u=20 \cos \left(\frac{\pi}{2}+\frac{\pi}{3}\right)=-20 \sin \frac{\pi}{3} \\
& =-20 \times \frac{\sqrt{3}}{2}=-10 \times \sqrt{3}
\end{aligned}
$$

The kinetic energy of particle,

$$
\begin{aligned}
& K E=\frac{1}{2} m u^{2} \\
& \because m=2 g=2 \times 10^{-3} \mathrm{~kg} \\
& =\frac{1}{2} \times 2 \times 10^{-3} \times(-10 \sqrt{3})^{2} \\
& =10^{-3} \times 100 \times 3=3 \times 10^{-1} \Rightarrow K . E .=0.3 \mathrm{~J}
\end{aligned}
$$

or
In first case, springs are connected in parallel, so their equivalent spring constant

$$
k_{p}=k_{1}+k_{2}
$$

So, frequency of this spring-block system is
$f_{p}=\frac{1}{2 \pi} \sqrt{\frac{k_{1}+k_{2}}{m}}$
but $k_{1}=k_{2}=k$
$\therefore \quad f_{p}=\frac{1}{2 \pi} \sqrt{\frac{2 k}{m}}$
Now in second case, springs are connected in series, so their equivalent spring constant

$$
k=\frac{k_{1} k_{2}}{k_{1}+k_{2}}
$$

Hence, frequency of this arrangement is given by

$$
\begin{align*}
& \quad f_{S}=\frac{1}{2 \pi} \sqrt{\frac{k_{1} k_{2}}{\left(k_{1}+k_{2}\right) m}} \\
& \text { or } \quad f_{S}=\frac{1}{2 \pi} \sqrt{\frac{k}{2 m}} \tag{ii}
\end{align*}
$$

Dividing Eq. (ii) by Eq. (i), we get

$$
\frac{f_{s}}{f_{p}}=\frac{\frac{1}{2 \pi} \sqrt{\frac{k}{2 m}}}{\frac{1}{2 \pi} \sqrt{\frac{2 k}{m}}}=\sqrt{\frac{1}{4}}
$$

or $\quad \frac{f_{s}}{f_{p}}=\frac{1}{2}$
(b)

Using $F=k x \Rightarrow 10 g=k \times 0.25 \Rightarrow k=\frac{10 g}{0.25}=98 \times 4$
Now $T=2 \pi \sqrt{\frac{m}{k}} \Rightarrow m=\frac{T^{2}}{4 \pi^{2}} k$
$\Rightarrow m=\frac{\pi^{2}}{100} \times \frac{1}{4 \pi^{2}} \times 98 \times 4=0.98 \mathrm{~kg}$
(c)

$$
n=\frac{1}{2 \pi} \sqrt{\frac{k}{m}} \Rightarrow n \propto \frac{1}{\sqrt{m}} \Rightarrow \frac{n_{1}}{n_{2}}=\sqrt{\frac{m_{2}}{m_{1}}}
$$

$$
\Rightarrow \frac{n}{n_{2}}=\sqrt{\frac{4 m}{m}} \Rightarrow n_{2}=\frac{n}{2}
$$

(c)

When the displacement of bob is less than maximum, there will two compounding acceleratins $\overrightarrow{a_{I}}$ and $\overrightarrow{a_{c}}$ of the bob as shown in figure. Their resultant acceleration \vec{a} will be represented by the diagonal of the parallelogram

(b)
$K=\frac{1}{2} m \omega^{2}\left(a^{2}-y^{2}\right)$

$$
\begin{aligned}
& \frac{3}{4} E=\frac{1}{2} m \omega^{2}\left(a^{2}-y^{2}\right) \\
& \frac{3}{4}\left(\frac{1}{2} m \omega^{2} a^{2}\right)=\frac{1}{2} m \omega^{2}\left(a^{2}-y^{2}\right) \\
& y^{2}=a^{2}-\frac{3}{4} a^{2}=\frac{a^{2}}{4} \\
& \Rightarrow \quad y=\frac{a}{2}
\end{aligned}
$$

(c)
$T=2 \pi \sqrt{\frac{l}{\mathrm{~g}}}$. When lift is accelerated upwards with acceleration $a(=\mathrm{g} / 4)$. Then effective acceleration due to gravity inside the lift

$$
\begin{aligned}
& \mathrm{g}_{1}=\mathrm{g}+a=\mathrm{g}+\frac{\mathrm{g}}{4}=\frac{5 \mathrm{~g}}{4} \\
& \therefore \quad T_{1}=2 \pi \sqrt{\frac{l}{5 g / 4}}=2 \pi \sqrt{\frac{l}{g}} \times \frac{2}{\sqrt{5}}=\frac{2 T}{\sqrt{5}}
\end{aligned}
$$

(c)

The total time from A to C

$$
\begin{aligned}
& t_{A C}=t_{A B}+t_{B C} \\
& =(T / 4)+t_{B C}
\end{aligned}
$$

Where $T=$ time period of oscillation of spring mass system
$t_{B C}$ can be obtained from, $B C=A B \sin (2 \pi / T) t_{B C}$
Putting $\frac{B C}{A B}=\frac{1}{2}$ we obtain $t_{B C}=\frac{T}{12}$
$\Rightarrow t_{A C}=\frac{T}{4}+\frac{T}{12}=\frac{2 \pi}{3} \sqrt{\frac{m}{k}}$
(b)
$\frac{a T}{x}=\frac{\omega^{2} x T}{x}=\frac{4 \pi^{2}}{T} \times T=\frac{4 \pi^{2}}{T}=$ constant
(b)

Maximum force on body while in SMH

$$
=m \omega^{2} a=0.5 \times(2 \pi / 2)^{2} \times 0.2=1 \mathrm{~N}
$$

Maximum force of friction $=\mu \mathrm{mg}=0.3 \times 0.5 \times 10=1.5 \mathrm{~N}$
Since the maximum force on the body due to SHM of the platform is less than the maximum possible frictional force, so the maximum force of friction will be equal to the maximum force acting on body due to SHM of platform ie, 1 N

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	B	D	C	C	D	C	A	A	B	D			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	A	B	C	C	B	C	C	B	C	B			

