CLASS : XITh

Solutions

Topic:- osCillations

1
(c)

When the bob falls through a vertical height of 1 m , the velocity acquired at the lowest point,
$v=\sqrt{2 g \mathrm{~h}}=\sqrt{2 \times 10 \times 1}=\sqrt{20} \mathrm{~ms}^{-1}$
Centrifugal force $=\frac{m v^{2}}{r}=\frac{0.01 \times 20}{1}=0.20 \mathrm{~N}$
Net tension=weight + centrifugal force

$$
=(0.01 \times 10+0.20)=0.30 \mathrm{~N}
$$

(c)

Mass $(m)=20 \mathrm{~g}=0.02 \mathrm{~kg}$
Frequency $(f)=\frac{5}{\pi} \mathrm{~Hz}$
Time period of a loaded spring

$$
T=2 \pi \sqrt{\frac{m}{k}}
$$

Frequency $(f)=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}$

$\frac{5}{\pi}=\frac{1}{2 \pi} \sqrt{\frac{k}{0.02}}$
or

$$
10=\sqrt{\frac{k}{0.02}}
$$

or $\quad 100=\frac{k}{0.02}$
$\therefore \quad k=2 \mathrm{Nm}^{-1}$
(c)
$y_{1}=a \sin \left(\omega t_{-} k x\right)$;
$y_{2}=b \cos \left(\omega t-\frac{k}{x}\right)=b \sin \left(\omega t-\frac{k}{x}+\pi / 2\right)$
\therefore Phase difference $=\left(\omega t-\frac{k}{x}+\pi / 2\right)-(\omega t-k x)$
$=\pi / 2$
(c)

When a mass m is placed on mass M, the new system is of mass $=(M+m)$, attached to the spring. New time period of oscillation,
$\begin{aligned} T^{\prime} & =2 \pi \sqrt{\frac{M+m}{k}} \\ T & =2 \pi \sqrt{\frac{M}{k}}\end{aligned}$
Let $v=$ velocity of the mass M while passing through the mean position. $v^{\prime}=$ Velocity of the mass $(M+m)$, while passing through the mean position.
According to law of conservation of linear momentum $M v=(M+m) v^{\prime}$
At mean position, $v=A \omega$ and $v^{\prime}=A^{\prime} \omega^{\prime}$
$\therefore \quad M A \omega=(m+m) A^{\prime} \omega$
or $A^{\prime}=\left(\frac{M}{M+m} \frac{\omega}{\omega}, A=\frac{M}{M+m} \times \frac{T^{\prime}}{T} \times A\right.$
$=\left(\frac{M}{M+m}\right) \times \sqrt{\frac{M+m}{M}} \times A$
$=A \sqrt{\frac{M}{M+m}}$
$n=\frac{1}{2 \pi} \sqrt{\frac{g}{l}} \Rightarrow n \propto \frac{1}{\sqrt{l}} \Rightarrow \frac{n_{1}}{n_{2}}=\sqrt{\frac{l_{2}}{l_{1}}}=\sqrt{\frac{L_{2}}{2 L_{2}}}$
$\Rightarrow \frac{n_{1}}{n_{2}}=\frac{1}{\sqrt{2}} \Rightarrow n_{2}=\sqrt{2} n_{1} \Rightarrow n_{2}>n_{1}$
Energy $E=\frac{1}{2} m \omega^{2} a^{2}=2 \pi^{2} m n^{2} a^{2}$
$\Rightarrow \frac{a_{1}^{2}}{a_{2}^{2}}=\frac{m_{2} n_{2}^{2}}{m_{1} n_{1}^{2}} \quad[\because E$ is same $]$
Given $n_{2}>n_{1}$ and $m_{1}=m_{2} \Rightarrow a_{1}>a_{2}$
(b)

The two spring on left side having spring constant of $2 k$ each are in series, equivalent constant is $\frac{1}{\left(\frac{1}{2 k}+\frac{1}{2 k}\right)}=k$. The two springs on right hand side of mass M are in parallel. Their effective spring constant is $(k+2 k)=3 k$
Equivalent spring constants of value k and $3 k$ are in parallel and their net value of spring constant of all the four springs is $k+3 k=4 k$
\therefore Frequency of mass is $n=\frac{1}{2 \pi} \sqrt{\frac{4 k}{M}}$
(a)

For S.H.M. $F=-k x$
\therefore Force $=$ Mass \times Acceleration $\propto-x$
$\Rightarrow F=-A k x$; where A and k are positive constants
(c)

When lift accelerates upwards, then effective acceleration on the pendulum

$$
\begin{aligned}
\mathrm{g}_{\text {eff }}=\mathrm{g} & +\frac{\mathrm{g}}{3}=\frac{4 \mathrm{~g}}{3} \\
\therefore \text { Time period } T^{\prime} & =2 \pi \sqrt{\frac{l}{\text { geff }}}=2 \pi \sqrt{\frac{l}{4 \mathrm{~g} / 3}} \\
& =\frac{\sqrt{3}}{2} \cdot 2 \pi \sqrt{\frac{l}{\mathrm{~g}}} \\
& =\frac{\sqrt{3}}{2} T
\end{aligned}
$$

(a)

When particle is at $x=2$, the displacement is $y=4 \sim 2=2 \mathrm{~cm}$. If r is the time taken by the particle to go from $x=4 \mathrm{~cm}$ to $x=2 \mathrm{~cm}$, then
$y=a \cos \omega t=a \cos \frac{2 \pi t}{T}=a \cos \frac{2 \pi t}{1.2}$
or $\cos \frac{2 \pi t}{1.2}=\frac{y}{a}=\frac{2}{4}=\frac{1}{2}=\cos \frac{\pi}{3}$
or $\frac{2 t}{1.2}=\frac{1}{3}$ or $t=\frac{1.2}{6}=0.26$
time taken to move from $x=+2 \mathrm{~cm}$ to $x=+4 \mathrm{~cm}$ and back again
$=2 t=2 \times 0.2 \mathrm{~s}=0.4 \mathrm{~s}$
(a)

Under forced oscillations, the body will vibrate with the frequency of the driving force
(c)
$E=\frac{1}{2} m \omega^{2} a^{2} \Rightarrow \frac{E^{\prime}}{E}=\frac{a^{\prime 2}}{a^{2}} \Rightarrow \frac{E^{\prime}}{E}=\frac{\left(\frac{3}{4} a\right)^{2}}{a^{2}}\left(\because a^{\prime}=\frac{3}{4} a\right)$
$\Rightarrow E^{\prime}=\frac{9}{16} E$
(b)

Let at any instant, cube is at a depth x from the equilibrium position then net force acting on the cube $=$ upthrust on the portion of length x

$$
\begin{equation*}
F=-\rho l^{2} x \mathrm{~g}=-\rho l^{2} \mathrm{~g} x \tag{i}
\end{equation*}
$$

Negative sign shows that, force is opposite to x. Hence equation of SHM

$$
\begin{equation*}
F=-k x \tag{ii}
\end{equation*}
$$

Comparing Eqs. (i) and (ii)

$k=\rho l^{2} \mathrm{~g}$
$T=2 \pi \sqrt{\frac{m}{k}}$

$$
=2 \pi \sqrt{\frac{l^{3} d}{\rho l^{2} \mathrm{~g}}}=2 \pi \sqrt{\frac{l d}{\rho \mathrm{~g}}}
$$

(a)

We know that during SHM, the restoring force is proportional to the displacement from equilibrium position. Hence restoring force is maximum when the displacement is maximum at its extreme position

(b)

Kinetic energy in SHM

$$
\begin{aligned}
& \mathrm{KE}=\frac{1}{2} m \omega^{2}\left(A^{2}-x^{2}\right) \\
& \text { At } x=\frac{A}{2} \\
& \begin{aligned}
\mathrm{KE} & =\frac{1}{2} m \omega^{2}\left(A^{2}-\frac{A^{2}}{4}\right)=\frac{3}{4}\left(\frac{1}{2} m \omega^{2} A^{2}\right) \\
& =\frac{3}{4} \times \text { Total energy of the particle }
\end{aligned}
\end{aligned}
$$

(c)

Displacement equation

$$
y=A \sin \omega t_{-} B \cos \omega t
$$

Let $A=a \cos \theta \quad$ and $\quad B=a \sin \theta$
So, $\quad A^{2}+B^{2}=a^{2}$
$\Rightarrow \quad a=\sqrt{A^{2}+B^{2}}$
Then, $\quad y=a \cos \theta \sin \omega t-a \sin \theta \cos \omega t$

$$
y=a \sin \left(\omega t_{-} \theta\right)
$$

which is the equation of simple harmonic oscillator The amplitude of the oscillator

$$
=a=\sqrt{A^{2}+B^{2}}
$$

(d)
$T=2 \pi \sqrt{\frac{l}{g}} \Rightarrow T \propto \sqrt{\frac{l}{g}}$, it is does not depend upon mass
(c)

When $t=1 s, y_{1}=r \sin \omega \times 1=r \sin \omega$
When $t=2 s, y_{2}=r \sin \omega \times 2=r \sin 2 \omega$
$\therefore \frac{y_{1}}{y_{2}}=\frac{r \sin \omega}{r \sin 2 \omega}$
$=\frac{1}{2 \cos \omega}=\frac{1}{2 \cos 2 \pi / T}$
$=\frac{1}{2 \cos 2 \pi / 8}$
$=\frac{1}{2 \cos \pi / 4}$
$=\frac{1}{2(1 / \sqrt{2})}=\frac{1}{\sqrt{2}}$
$\therefore \quad y_{2}=\sqrt{2} y_{1}$
Distance converted in $2^{\text {nd }}$ second
$=y_{2}-y_{1}=(\sqrt{2}-1) y_{1}$
$\therefore \quad$ Ratio $=1:(\sqrt{2}-1)$

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	C	C	C	C	C	A	A	B	B	A			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	C	A	A	C	B	A	B	C	D	C			

