CLASS : XITh
SUBJECT : PHYSICS
DATE:

Topic :-OSCILLATIONS

1. Two identical blocks A and B, each of mass m resting on smooth floor, are connected by a light spring of natural length L and the spring constant k, with the spring at its natural length. A third identical block at C (mass m) moving with a speed (v) along the line joining A and B collides with A. The maximum compression in the spring is proportional to
a) $v \sqrt{\frac{m}{2 k}}$
b) $m \sqrt{\frac{v}{2 k}}$
c) $\sqrt{\frac{m v}{k}}$
d) $\frac{m v}{2 k}$
2. The length of a spring is l and its force constant is k. When a weight W is suspended from it, its length increases by x. If the spring is cut into two equal parts and put in parallel and the same weight W is suspended from them, then the extension will be
a) $2 x$
b) x
c) $\frac{x}{2}$
d) $\frac{x}{4}$
3. A simple pendulum of length l has been set up inside a railway wagon sliding down a frictionless inclined plane having an angle of inclination $\theta=30^{\circ}$ with the horizontal. What will be its period of oscillation as recorded by an observer inside the wagon?
a) $2 \pi \sqrt{\frac{2 l}{\sqrt{3 g}}}$
b) $2 \pi \sqrt{2 l / g}$
c) $2 \pi \sqrt{l / g}$
d) $2 \pi \sqrt{\frac{\sqrt{3 l}}{2 g}}$
4. Which of the following equations does not represent a simple harmonic motion
a) $y=a \sin \omega t$
b) $y=a \cos \omega t$
c) $y=a \sin \omega t+b \cos \omega t$
d) $y=a \tan \omega t$
5. A body is executing simple harmonic motion with an angular frequency $2 \mathrm{rad} / \mathrm{s}$. The velocity of the body at 20 mm displacement, when the amplitude of motion is 60 mm , is
a) $40 \mathrm{~mm} / \mathrm{s}$
b) $60 \mathrm{~mm} / \mathrm{s}$
c) $113 \mathrm{~mm} / \mathrm{s}$
d) $120 \mathrm{~mm} / \mathrm{s}$
6. A piece of wood has dimensions a, b and c. Its relative density is d. It is floating in water such that the side c is vertical. It is now pushed down gently and released. The time period is
a) $T=2 \pi \sqrt{\left(\frac{a b c}{g}\right)}$
b) $T=2 \pi \sqrt{\left(\frac{b a}{d g}\right)}$
c) $T=2 \pi \sqrt{\left(\frac{g}{d c}\right)}$
d) $T=2 \pi \sqrt{\left(\frac{a c}{g}\right)}$
7. The metallic bob of a simple pendulum has the relative density ρ. The time period of this pendulum is T. If the metallic bob is immersed in water, then the new time period is given by
a) $T \frac{\rho_{-}}{\rho}$
b) $T \frac{\rho}{\rho-1}$
c) $T \sqrt{\frac{\rho_{-1}}{\rho}}$
d) $T \sqrt{\frac{\rho}{\rho-1}}$
8. A particle executes a simple harmonic motion of time period T. Find the time taken by the particle to go directly from its mean position to half the amplitude
a) $T / 2$
b) $T / 4$
c) $T / 8$
d) $T / 12$
9. A simple harmonic oscillator has a period T and energy E. the amplitude of the oscillator is doubled. Choose the correct answer.
a) Period and energy get doubled
b) Period gets doubled while energy remains the same
c) Energy gets double while period remains the same
d) Period remains the same and energy becomes four times
10. On a planet a freely falling body takes $2 s$ when it is dropped from a height of $8 m$, the time period of simple pendulum of length 1 m on that planet is
a) 3.14 s
b) 16.28 s
c) 1.57 s
d) None of these
11. A simple pendulum has time period T_{1}. The point of suspension is now moved upward according to the relation $y=k t^{2},\left(k=1 \mathrm{~ms}^{-2}\right)$ where y is the vertical displacement. The time period now becomes T_{2}. The ratio of $\frac{T_{1}^{2}}{T_{2}^{2}}$ is $\left(g=10 \mathrm{~ms}^{-2}\right)$
a) $6 / 5$
b) $5 / 6$
c) 1
d) $4 / 5$
12. A particle of mass m is located in a one dimensional potential field where potential energy is given by $(x)=A(1-\cos p x)$, where A and p are constants. The period of small oscillations of the particle is
a) $2 \pi \sqrt{\frac{m}{A p}}$
b) $2 \pi \sqrt{\frac{m}{A p^{2}}}$
c) $2 \pi \sqrt{\frac{m}{A}}$
d) $\frac{1}{2 \pi} \sqrt{\frac{A R}{m}}$
13. An object is attached to the bottom of a light vertical spring and set vibrating. The maximum speed of the object is $15 \mathrm{~cm} / \mathrm{s}$ and the period is 628 milli-seconds. The amplitude of the motion in centimeters is
a) 3.0
b) 2.0
c) 1.5
d) 1.0
14. The length of the second's pendulum is decreased by 0.3 cm when it is shifted to Chennai from London. If the acceleration due to gravity at London is $981 \mathrm{cms}^{-2}$, the acceleration due to gravity at Chennai is (assume $\pi^{2}=10$)
a) $981 \mathrm{cms}^{-2}$
b) $978 \mathrm{cms}^{-2}$
c) $984 \mathrm{cms}^{-2}$
d) $975 \mathrm{cms}^{-2}$
15. The velocity of a particle performing simple harmonic motion, when it passes through its mean position is
a) Infinity
b) Zero
c) Minimum
d) Maximum
16. A girl swings on cradle in a sitting position. If she stands what happens to the time period of girl and cradle?
a) Time period decreases
b) Time period increases
c) Remains constant
d) First increases and then remains constant
17. For a simple pendulum, the graph between T^{2} and L is
a) A straight line passing through the origin
c) Circle
d) Ellipse
18. The motion which is not simple harmonic is
a) Vertical oscillations of a spring
b) Motion of simple pendulum
c) Motion of a planet around the sun
d) Oscillation of liquid column in a U-tube
19. In a simple harmonic oscillator, at the mean position
a) Kinetic energy is minimum, potential energy is maximum
b) Both kinetic and potential energies are maximum
c) Kinetic energy is maximum, potential energy is minimum
d) Both kinetic and potential energies are minimum
20. Which of the following figure represent(s) damped simple harmonic motions?

(1)

(2)

(3)

a) Fig. 1 alone
b) Fig. 2 alone

d) Fig. 3 and 4
