CLASS : XITH
Solutions

Topic:- OSCILLATIONS

1
(a)

When block (C) strikes the block (A), then it begins to oscillate, whose time period

$$
T=2 \pi \sqrt{\frac{m}{2 k}}
$$

Compression $x=v T=v \times 2 \pi \sqrt{\frac{m}{2 k}}$

$$
\therefore \quad x \propto v \sqrt{\frac{m}{2 k}}
$$

(d)

Spring is cut into two equal halves so spring constant of each part $=2 k$
These parts are in parallel so $K_{e q}=2 K+2 K=4 K$
Extension force (i.e. W) is same hence by using $F=k x$
$\Rightarrow 4 k \times x^{\prime}=k x \Rightarrow x^{\prime}=\frac{x}{4}$
(a)

On the inclined plane, the effective acceleration due to gravity
$\mathrm{g}^{\prime}=\mathrm{g} \cos 30$ 。
$=\mathrm{g} \times \sqrt{3} / 2$
$\therefore \quad \mathrm{T}=2 \pi \sqrt{\frac{\mathrm{l}}{\mathrm{g}^{\prime}}}=2 \pi \sqrt{\frac{2 \mathrm{l}}{\sqrt{3} \mathrm{~g}}}$
(d)

Standard equation of S.H.M. $\frac{d^{2} y}{d t^{2}}=-\omega^{2} y$, is not satisfied by $y=a \tan \omega t$
(c)
$v=\omega \sqrt{\left(a^{2}-y^{2}\right)}=2 \sqrt{60^{2}-20^{2}}=113 \mathrm{~mm} / \mathrm{s}$
(d)

Let the distance of vertical disc c of block be pushed in liquid, when block is floating, then Buoyancy force
$=a b x x_{\omega}, \mathrm{g}=a b x \mathrm{~g}$

The mass of piece of wood $=a b c d$
So acceleration $=-a b x g / a b c d=-\left(\frac{\mathrm{g}}{c d}\right) x$
Hence, time period, $T=2 \pi \sqrt{\frac{d c}{\mathrm{~g}}}$
(d)

When the bob is immersed in water its effective weight
$=\left(m g-\frac{m}{\rho} g\right)=m g\left(\frac{\rho-1}{\rho}\right)$
$\therefore g_{e f f}=g\left(\frac{\rho-1}{\rho}\right)$
$\frac{T^{\prime}}{T}=\sqrt{\frac{g}{g_{\text {eff }}}} \Rightarrow T^{\prime}=T \sqrt{\frac{\rho}{(\rho-1)}}$
(d)
$y=A \sin \omega t=\frac{A \sin 2 \pi}{T} t \Rightarrow \frac{A}{2}=A \sin \frac{2 \pi t}{T} \Rightarrow t=\frac{T}{12}$
(d)

Time period of harmonic oscillator is independent of the amplitude of oscillation. Energy of oscillation is
$E=\frac{1}{2} m \omega^{2} a^{2} \quad i e, E \propto a^{2}$
So if a is double, E becomes four times.
(a)

On a planet, if a body dropped initial velocity $(u=0)$ from a height h and takes time t to reach the ground then $\mathrm{h}=\frac{1}{2} g_{P} t^{2} \Rightarrow g_{P}=\frac{2 \mathrm{~h}}{t^{2}}=\frac{2 \times 8}{4}=4 \mathrm{~m} / \mathrm{s}^{2}$
Using $T=2 \pi \sqrt{\frac{l}{g}} \Rightarrow T=2 \pi \sqrt{\frac{1}{4}}=\pi=3.14 \mathrm{sec}$
(a)

$$
\begin{aligned}
& y=k t^{2} \\
& \frac{d^{2} y}{d t^{2}}=2 k
\end{aligned}
$$

or $\quad a_{y}=2 \mathrm{~ms}^{-2}$
(as $k=1 \mathrm{~ms}^{-2}$)

$$
T_{1}=2 \pi \sqrt{\frac{l}{g}}
$$

and $\quad T_{2}=2 \pi \sqrt{\frac{l}{g+a_{y}}}$
$\therefore \quad \frac{T_{1}^{2}}{T_{2}^{2}}=\frac{\mathrm{g}+a_{y}}{\mathrm{~g}}=\frac{10+2}{10}=\frac{6}{5}$
(b)

$$
\begin{aligned}
& v_{x}=A(1-\cos p x) \\
& \quad F=-\frac{d v}{d x}=-A p \sin p x
\end{aligned}
$$

For small (x)

$$
F=-A p^{2} x
$$

$$
\begin{aligned}
& a \\
a & =-\frac{A p^{2}}{m} x \\
& =\omega^{2} x \\
\omega & =\sqrt{\frac{A p^{2}}{m}} \\
\therefore \quad & T=2 \pi \sqrt{\frac{m}{A p^{2}}}
\end{aligned}
$$

(c)

$$
\begin{aligned}
& v_{\max }=a \omega=a \frac{2 \pi}{T} \\
& \Rightarrow a=\frac{v_{\max } T}{2 \pi}=\frac{15 \times 628 \times 10^{-3}}{2 \times 3.14}=1.5 \mathrm{~cm}
\end{aligned}
$$

(b)

The time period of a pendulum of length l, is

$$
\begin{array}{ll}
& T=2 \pi \sqrt{\frac{l}{\mathrm{~g}}} \\
\Rightarrow & l=\mathrm{g} \frac{T^{2}}{4 \pi^{2}} \\
\text { Since, } \quad & T=2 \mathrm{~s} \quad \text { (for second's pendulum) }
\end{array}
$$

$$
\therefore \quad l_{1}=\frac{\mathrm{g}_{1}(2)^{2}}{4 \pi^{2}}=\frac{\mathrm{g}_{1}}{\pi^{2}} ; l_{2}=\frac{\mathrm{g}_{2}(2)^{2}}{4 \pi^{2}}=\frac{\mathrm{g}_{2}}{\pi^{2}}
$$

Since, length is decreased, g_{2} is less than g_{1}

$$
\begin{array}{lr}
\therefore & l_{1}-l_{2}=\frac{\mathrm{g}_{1}-\mathrm{g}_{2}}{\pi^{2}} \\
\Rightarrow & \left(l_{1}-l_{2}\right) \pi^{2}=\mathrm{g}_{1}-\mathrm{g}_{2} \\
& 0.3 \times 10=\mathrm{g}_{1}-\mathrm{g}_{2} \\
\therefore & \mathrm{~g}_{2}=981-3=978 \mathrm{cms}^{-2}
\end{array}
$$

(d)

In S.H.M. at mean position velocity is maximum
So $v=a \omega$ (maximum)
(a)

As the girl stands up, the effective length of pendulum decreases due to the reason that the centre of gravity rises up. Hence, according to

$$
T=2 \pi \sqrt{\frac{l}{\mathrm{~g}}}
$$

T will decrease.
(a)

$$
T=2 \pi \sqrt{\frac{L}{\mathrm{~g}}}
$$

or $\quad T \propto \sqrt{L}$ or $T^{2} \propto L$
It is linear relation between T^{2} and l hence the graph between T^{2} and L is a straight line passing through the origin.
(c)

The motion of a planet around the sun is a periodic motion but not a simple harmonic motion. All other given motions are the examples of simple harmonic motion
(a)

Fig. (i) alone represents damped SHM

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	A	D	A	D	C	D	D	D	D	A			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	A	B	C	B	D	A	A	C	C	A			

