CLASS : XIтн DATE :

(a)

(d)

(a)

Solutions

PRACTICE PROBLEM

SUBJECT : PHYSICS DPP NO. : 4

Topic :- OSCILLATIONS

1

When block (*C*) strikes the block (*A*), then it begins to oscillate, whose time period $T = 2\pi \sqrt{\frac{m}{2k}}$

Compression $x = vT = v \times 2$

$$\therefore \qquad x \propto v_{\sqrt{\frac{m}{2k}}}$$

2

Spring is cut into two equal halves so spring constant of each part = 2kThese parts are in parallel so $K_{eq} = 2K + 2K = 4K$ Extension force (*i.e. W*) is same hence by using F = kx $\Rightarrow 4k \times x' = kx \Rightarrow x' = \frac{x}{4}$

 $\frac{m}{2k}$

On the inclined plane, the effective acceleration due to gravity $g' = g \cos 30^{\circ}$

$$= g \times \sqrt{3}/2$$

$$\therefore T = 2\pi \sqrt{\frac{l}{g}} = 2\pi \sqrt{\frac{2l}{\sqrt{3}g}}$$

4 **(d)**

Standard equation of S.H.M. $\frac{d^2y}{dt^2} = -\omega^2 y$, is not satisfied by $y = a \tan \omega t$

5 **(c)**

$$v = \omega \sqrt{(a^2 - y^2)} = 2\sqrt{60^2 - 20^2} = 113 mm/s$$

(d)

6

Let the distance of vertical disc *c* of block be pushed in liquid, when block is floating, then Buoyancy force $= abxx_{\omega}, g = abxg$

PRERNA EDUCATION

The mass of piece of wood = *abcd* So acceleration = $-abxg/abcd = -\left(\frac{g}{cd}\right)x$ Hence, time period, $T = 2\pi \sqrt{\frac{dc}{g}}$

(d)

(d)

(a)

7

When the bob is immersed in water its effective weight

$$= \left(mg - \frac{m}{\rho}g\right) = mg\left(\frac{\rho - 1}{\rho}\right)$$
$$\therefore g_{eff} = g\left(\frac{\rho - 1}{\rho}\right)$$
$$\frac{T'}{T} = \sqrt{\frac{g}{g_{eff}}} \Rightarrow T' = T\sqrt{\frac{\rho}{(\rho - 1)}}$$
(d)

8

$$y = A \sin \omega t = \frac{A \sin 2\pi}{T} t \Rightarrow \frac{A}{2} = A \sin \frac{2\pi t}{T} \Rightarrow t = \frac{T}{12}$$

9

Time period of harmonic oscillator is independent of the amplitude of oscillation. Energy of oscillation is

$$E = rac{1}{2}m\omega^2 a^2$$
 ie, $E \propto a^2$

So if *a* is double, *E* becomes four times.

10

11

On a planet, if a body dropped initial velocity (u = 0) from a height h and takes time t to reach the ground then $h = \frac{1}{2}g_P t^2 \Rightarrow g_P = \frac{2h}{t^2} = \frac{2 \times 8}{4} = 4 m/s^2$

Using
$$T = 2\pi \sqrt{\frac{l}{g}} \Rightarrow T = 2\pi \sqrt{\frac{1}{4}} = \pi = 3.14 \text{ sec}$$

(a)
 $y = kt^2$
 $\frac{d^2y}{dt^2} = 2k$
or $a_y = 2 \text{ ms}^{-2}$ (as $k = 1 \text{ ms}^{-2}$)
 $T_1 = 2\pi \sqrt{\frac{l}{g}}$
and $T_2 = 2\pi \sqrt{\frac{l}{g + a_y}}$
 $\therefore \qquad \frac{T_1^2}{T_2^2} = \frac{g + a_y}{g} = \frac{10 + 2}{10} = \frac{6}{5}$
(b)
 $m = A(1 \text{ ans max})$

12

$$v_x = A(1 - \cos px)$$

$$F = -\frac{dv}{dx} = -Ap\sin px$$

For small (x)

$$F = -Ap^2x$$

$$a = -\frac{Ap^{2}}{m}x$$

$$a = \omega^{2}x$$

$$\omega = \sqrt{\frac{Ap^{2}}{m}}$$

$$\therefore \quad T = 2\pi\sqrt{\frac{m}{Ap^{2}}}$$
(c)

13

$$v_{\text{max}} = a\omega = a \frac{2\pi}{T}$$

 $\Rightarrow a = \frac{v_{\text{max}}T}{2\pi} = \frac{15 \times 628 \times 10^{-3}}{2 \times 3.14} = 1.5 \ cm$
(b)

14

The time period of a pendulum of length l, is

$$T = 2\pi \sqrt{\frac{l}{g}}$$

$$\Rightarrow \quad l = g \frac{T^2}{4\pi^2}$$
Since, $T = 2 s$ (for second's pendulum)

$$\therefore \quad l_1 = \frac{g_1(2)^2}{4\pi^2} = \frac{g_1}{\pi^2}; l_2 = \frac{g_2(2)^2}{4\pi^2} = \frac{g_2}{\pi^2}$$
Since, length is decreased, g_2 is less than g_1

$$\therefore \quad l_1 - l_2 = \frac{g_1 - g_2}{\pi^2}$$

$$\Rightarrow \quad (l_1 - l_2)\pi^2 = g_1 - g_2$$

$$\therefore \quad g_2 = 981 - 3 = 978 \text{ cms}^{-2}$$
(d)

15

In S.H.M. at mean position velocity is maximum So $v = a\omega$ (maximum)

16

(a)

As the girl stands up, the effective length of pendulum decreases due to the reason that the centre of gravity rises up. Hence, according to

$$T = 2\pi \sqrt{\frac{l}{g}}$$

T will decrease.

17

(a) $T = 2\pi \sqrt{\frac{L}{g}}$

or
$$T \propto \sqrt{L}$$
 or $T^2 \propto L$

It is linear relation between T^2 and l hence the graph between T^2 and L is a straight line passing through the origin.

18

(c)

(a)

The motion of a planet around the sun is a periodic motion but not a simple harmonic motion. All other given motions are the examples of simple harmonic motion

Fig. (i) alone represents damped SHM

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
А.	А	D	А	D	С	D	D	D	D	A
Q.	11	12	13	14	15	16	17	18	19	20
А.	А	В	С	В	D	A	А	С	С	A

