Class: XIth
Date :
Solutions
Subject : PHYSICS DPP No. : 3

Topic :-OSCILLATIONS

1

2

3
(c)

Under the influence of one force $F_{1}=m \omega_{1}^{2} y$ and under the action of another force, $F_{2}=m$ $\omega_{2}^{2} y$
Under the action of both the forces $F=F_{1}+F_{2}$
$\Rightarrow m \omega^{2} y=m \omega_{1}^{2} y+m \omega_{2}^{2} y$
$\Rightarrow \omega^{2}=\omega_{1}^{2}+\omega_{2}^{2} \Rightarrow\left(\frac{2 \pi}{T}\right)^{2}=\left(\frac{2 \pi}{T_{1}}\right)^{2}+\left(\frac{2 \pi}{T_{2}}\right)^{2}$
$\Rightarrow T=\sqrt{\frac{T_{1}^{2} T_{2}^{2}}{T_{1}^{2}+T_{2}^{2}}}=\sqrt{\frac{\left(\frac{4}{5}\right)^{2}\left(\frac{3}{5}\right)^{2}}{\left(\frac{4}{5}\right)^{2}+\left(\frac{3}{5}\right)^{2}}}=0.48 \mathrm{~s}$
2 (b)
$T=2 \pi \sqrt{\frac{m}{k}}, T^{\prime}=2 \pi \sqrt{\frac{m}{4 k}}=\frac{T}{2}=\frac{5}{2} \mathrm{~s}=2.5 \mathrm{~s}$
(c)

If v and v^{\prime} are the velocities of the block of mass M and $(M+m)$ while passing from the mean position when executing SHM
Using law of conservation of linear momentum, we have
$m v=(M+m) v^{\prime}$ or $\quad v^{\prime}=m v /(M+m)$
Also, maximum $\mathrm{PE}=$ maximum KE
$\therefore \frac{1}{2} k A^{\prime 2}=\frac{1}{2}(M+m) v^{\prime 2}$
or $A^{\prime}=\left(\frac{M+m}{k}\right)^{1 / 2} \times \frac{m v}{(M+m)}$
$=\frac{m v}{\sqrt{(M+m) k}}$
(a)

The block is released from A
$x=4.9 m+(0.2 m) \sin \left(\omega t+\frac{\pi}{2}\right)$
at $t=1 s ; x=5 m$
so range of projectile will be 5 m
Now $5=\frac{v^{2} \sin 90^{\circ}}{g} \Rightarrow v^{2}=50 \Rightarrow v=\sqrt{50}$
(c)

On comparing with standard equation $\frac{d^{2} y}{d t^{2}}+\omega^{2} y=0$
we get $\omega^{2}=K \Rightarrow \omega=\frac{2 \pi}{T}=\sqrt{K} \Rightarrow T=\frac{2 \pi}{\sqrt{K}}$
(c)

$$
\begin{aligned}
y= & A \sin \left(\frac{2 \pi}{T}\right) t \\
& \frac{A}{2}=A \sin \left(\frac{2 \pi}{T}\right) t=\frac{2 \pi}{T} t=\pi / 6
\end{aligned}
$$

Time period $t=\frac{T}{12}=\frac{6}{12}=\frac{1}{2} \mathrm{~s}$
(d)

Potential energy of particle performing SHM is given by: $P E=\frac{1}{2} m \omega^{2} y^{2}$, i.e., it varies parabolically such that at mean position it becomes zero and maximum at extreme positions
(c)

A particle oscillating under a force $\vec{F}=-k \vec{x}=b \vec{v}$ is a damped oscillator. The first term $-k$ \vec{x} represents the restoring force and second term $-b \vec{v}$ represents the damping force
(c)

Effective force constant is equal to the reciprocal of the sum of individual force constant, hence

$$
\frac{1}{k_{e}}=\frac{1}{k_{1}}+\frac{1}{k_{2}}+\frac{1}{k_{3}}+\ldots
$$

Given, $\quad k_{1}=k, k_{2}=2 k, k_{3}=3 k, \ldots .$.

$$
\therefore \quad \frac{1}{k_{e}}=\frac{1}{k}+\frac{1}{2 k}+\frac{1}{4 k}+\frac{1}{8 k}+\ldots
$$

The given series a geometric progression series, hence sum is

$$
S_{\infty}=\frac{a}{1-r}
$$

where a is first term of series and r the common difference.
$\Rightarrow \quad \frac{1}{k_{e}}=\frac{1}{k} \times \frac{1}{\left(1-\frac{1}{2}\right)}=\frac{2}{k} \Rightarrow k_{e}=\frac{k}{2}$
(a)

Time period $\quad T=2 \pi \sqrt{\frac{l}{g_{\text {eff }}}}$

$$
T=2 \pi \sqrt{\frac{l}{\mathrm{~g} \cos \alpha}}
$$

(d)
$x_{1}+x_{2}=A$ and $k_{1} x_{1}=k_{2} x_{2} \quad$ or $\frac{x_{1}}{x_{2}}=\frac{k_{2}}{k_{1}}$
Solving these equations, we get

$$
x_{1}=\left(\frac{k_{2}}{k_{1}+k_{2}}\right) A
$$

(c)

The effective acceleration in a lift descending with acceleration $\frac{g}{3}$ is $g_{\text {eff }}=g-\frac{g}{3}=\frac{2 g}{3}$
$\therefore T=2 \pi \sqrt{\left(\frac{L}{g_{\text {eff }}}\right)}=2 \pi \sqrt{\left(\frac{L}{2 g / 3}\right)}=2 \pi \sqrt{\left(\frac{3 L}{2 g}\right)}$
(b)

Time period of simple pendulum is given by

$$
\begin{equation*}
T=2 \pi \sqrt{\frac{l}{\mathrm{~g}}} \tag{i}
\end{equation*}
$$

When the lift is moving up with an acceleration a, then time period becomes

$$
T^{\prime}=2 \pi \sqrt{\frac{l}{g+a}}
$$

Here, $\quad T^{\prime}=\frac{T}{2}$
$\Rightarrow \quad \frac{T}{2}=2 \pi \sqrt{\frac{l}{\mathrm{~g}+a}}$
Dividing Eq.(ii) by Eq. (i), we get

$$
a=3 \mathrm{~g}
$$

(d)
$n=\frac{1}{2 \pi} \sqrt{\frac{K_{e q}}{m}}=\frac{1}{2 \pi} \sqrt{\frac{K_{1} K_{2}}{\left(K_{1}+K_{2}\right) m}}$

17

18

19
(b)
$m_{1}=1 \mathrm{~kg}$, extension $l_{1}=5 \mathrm{~cm}=5 \times 10^{2} \mathrm{~m}$
$\therefore \quad m_{1} \mathrm{~g}=k l_{1}$
$k=$ force constant of the spring

$$
k=\frac{m_{1} \mathrm{~g}}{l_{1}}=\frac{1 \times 10}{5 \times 10^{-2}}=200 \mathrm{Nm}^{-1}
$$

Time period of the block of mass 2 kg .

$$
T=2 \pi \sqrt{\frac{m}{k}}=2 \pi \sqrt{\frac{2}{200}}=2 \pi \times \frac{1}{10}=\frac{\pi}{5} \mathrm{~s}
$$

Maximum velocity $v_{\text {max }}=A \omega$
where $A=$ Amplitude

$$
\begin{aligned}
= & 10 \mathrm{~cm}=10 \times 10^{-2} \mathrm{~m} \\
v_{\max } & =A \times \frac{2 \pi}{T}=10 \times 10^{-2} \times \frac{2 \pi}{\pi / 5} \\
& =10^{-1} \times 2 \times 5=1 \mathrm{~ms}^{-1}
\end{aligned}
$$

(c)

Torque about $P=-(k x) \frac{L}{2}+\left(-k x \frac{L}{2}\right)=-k x L=-k \frac{L^{2}}{2} \theta$
For small angle $\theta, x=\frac{L}{2} \theta ; \tau=-I \alpha$

$\Rightarrow-\frac{K L^{2}}{2} \theta=\frac{M L^{2}}{12} \alpha$
$\Rightarrow \frac{-6 K \theta}{M}=\alpha$
$\Rightarrow \omega=\sqrt{\frac{6 K}{M}}$ and $f=\frac{\omega}{2 \pi}=\frac{1}{2 \pi} \sqrt{\frac{6 K}{M}}$
(c)

If first equation is

$$
\begin{equation*}
y_{1}=a_{1} \sin \omega t \Rightarrow \sin \omega t=\frac{y_{1}}{a_{1}} \tag{i}
\end{equation*}
$$

Then second equation will be

$$
\begin{align*}
y_{2}= & a_{2} \sin \left(\omega t+\frac{\pi}{2}\right) \\
= & a_{2}\left[\sin \omega t \cos \frac{\pi}{2}+\cos \omega t \sin \frac{\pi}{2}\right]=a_{2} \cos \omega t \\
\Rightarrow \quad & \cos \omega t=\frac{y_{2}}{a_{2}} \tag{ii}
\end{align*}
$$

By squaring and adding Eqs. (i) and (ii)

$$
\sin ^{2} \omega t+\cos ^{2} \omega t=\frac{y_{1}^{2}}{a_{1}^{2}}+\frac{y_{2}^{2}}{a_{2}^{2}}
$$

$$
\Rightarrow \quad \frac{y_{1}^{2}}{a_{1}^{2}}+\frac{y_{2}^{2}}{a_{2}^{2}}=1 ;
$$

This is equation of an ellipse.
(c)

By using conservation of mechanical energy
$\frac{1}{2} k x^{2}=\frac{1}{2} m v^{2} \Rightarrow x=v \sqrt{m / k}$

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	C	B	C	A	C	C	D	C	C	C			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	A	D	C	B	B	D	B	C	C	C			

