

Class : XIth Date : Subject : PHYSICS DPP No. : 10

Topic :-.OSCILLATIONS

A child swings sitting and standing inside swing as shown in figure, then period of oscillations have the relation

a)
$$(T)_{Sitting} = (T)_{Standing}$$

c)
$$(T)_{Sitting} < (T)_{Standing}$$

b) $(T)_{Sitting} > (T)_{Standing}$ d) $2(T)_{Sitting} = (T)_{Standing}$

- 2. A particle is subjected simultaneously to two SHM's one along the *x*-axis and the other along the *y*-axis. The two vibrations are in phase and have unequal amplitudes. The particle will execute
 - a) Straight lineb) Circular motion c) Elliptic motion d) Parabolic motion motion
- 3. A block is placed on a frictionless horizontal table. The mass of the block is m and springs are attached on either side with force constants K_1 and K_2 . If the block is displaced a little and left to oscillate, then the angular frequency of oscillation will be

a)
$$\left(\frac{K_1 + K_2}{m}\right)^{1/2}$$
 b) $\left[\frac{K_1 K_2}{m(K_1 + K_2)}\right]^{1/2}$ c) $\left[\frac{K_1 K_2}{(K_1 - K_2)m}\right]^{1/2}$ d) $\left[\frac{K_1^2 + K_2^2}{(K_1 + K_2)m}\right]^{1/2}$

4. Two linear SHMs of equal amplitude A and angular frequencies ω and 2ω are impressed on a particle along the axes *x* and *y* recpectively. If the initial phase difference between them is $\pi/2$, the resultant path followed by the particle is

a)
$$y^2 = x^2(1 - x^2/A^2)$$

b) $y^2 = 2x^2(1 - x^2A^2)$
c) $y^2 = 4x^2(1 - x^2/A^2)$
d) $y^2 = 8x^2(1 - x^2/A^2)$

5. If a watch with a wound spring is taken on to the moon, it
a) Runs fasterb) Runs slowerc) Does not workd) Shown no change

The displacement *x*(in metre) of a particle in simple harmonic motion is related to time *t*(in second) as

$$x = 0.01 \cos\left(\pi t + \frac{\pi}{4}\right)$$

The frequency of the motion will be a) 0.5 Hz b) 1.0 Hz

c) $\frac{\pi}{2}$ Hz d) π Hz

- 7. A simple pendulum is attached to the roof of a lift. If time period of oscillation, when the lift is stationary is *T*. Then frequency of oscillation, when the lift falls freely, will be a) Zero b) T c) 1/T d) None of these
- 8. A highly rigid cubical block *A* of small mass *M* and side *L* is fixed rigidly on the cubical block of same dimensions and low modulus of rigidity η such that the lower face of A completely covers the upper face of *B* the lower face of B is rigidly held on a horizontal surface. A small force *F* is applied perpendicular to one of the side faces of *A*. after the force is withdrawn, block *A* executes small oscillations, the time period of which is given by a) $2\pi\sqrt{ML\eta}$ b) $2\pi\sqrt{M\eta/L}$ c) $2\pi\sqrt{ML/\eta}$ d) $2\pi\sqrt{M/\eta L}$
- 9. A heavy brass sphere is hung from a weightless inelastic spring and as a simple pendulum its time period of oscillation is *T*. When the sphere is immersed in a non-viscous liquid of density 1/10 that of brass, it will act as a simple pendulum of period

a)
$$T$$
 b) $\frac{10}{9}$ T c) $\sqrt{\left(\frac{9}{10}\right)T}$ d) $\sqrt{\left(\frac{10}{9}\right)T}$

^{10.} If a simple harmonic is represented by $\frac{d^2x}{dt^2} + \alpha x = 0$, its time period is

a)
$$\frac{2\pi}{\alpha}$$
 b) $\frac{2\pi}{\sqrt{\alpha}}$ c) $2\pi\alpha$ d) $2\pi\sqrt{\alpha}$

- 11. A body of mass 4 kg hangs from a spring and oscillates with a period 0.5 s on the removel of the body, the spring is shortented by
 a) 6.3 cm
 b) 0.63 cm
 c) 6.25 cm
 d) 6.3 cm
- 12. Two particles *A* and *B* execute simple harmonic motion of period *T* and 5T/4. They start from mean position. The phase difference between them when the particle *A* complete an oscillation will be

c) 2π/5

- d) $\pi/4$
- 13. A body of mass 8 *kg* is suspended through two light springs *X* and *Y* connected in series as shown in figure. The readings in *X* and *Y* respectively are

a) 8 *kg*, zero

c) 8 kg, 8 kg

d)2 *kg* ,6 *kg*

- 14. A simple pendulum is suspended from the ceiling of a stationary elevator and its period of oscillation is *T*. The elevator is then set into motion and the new time period is found to be longer. Then the elevator is
 - a) Accelerated upward

- b) Accelerated downward
- c) Moving downward with nonuniform speed d) Moving downward with uniform speed

b) zero, 8 kg

b)Zero

- 15. A spring (spring constant = k) is cut into 4 equal parts and two parts are connected in parallel. What is the effective spring constant?
 a) 4 k b) 16 k c) 8 k d) 6 k
- 16. A block (B) is attached to two unstretched springs S_1 and S_2 with spring constants k and 4 k, respectively (see figure I). The other ends are attached to identical supports M_1 and M_2 not attached to the walls. The springs and supports have negligible mass. There is no friction anywhere. The block B is displaced towards wall 1 by a small distance x (figure II) and released. The block returns and moves a maximum distance y towards wall 2. Displacements x and y are measured with respect to the equilibrium position of the block B. The ratio $\frac{y}{x}$ is

- 18. A particle executing simple harmonic motion along *y*-axis has the its motion described by the equation $y = A\sin(\omega t) + B$. The amplitude of the simple harmonic motion is a) A b) B c) A + B d) $\sqrt{A + B}$
- 19. A particle executes simple harmonic oscillation with an amplitude *a*. The period of oscillation is *T*. The minimum time taken by the particle to travel half of the amplitude from the equilibrium is

a)
$$\frac{T}{4}$$
 b) $\frac{T}{8}$ c) $\frac{T}{12}$ d) $\frac{T}{2}$

20. Maximum speed of a particle in SHM is v_{max} . Then average speed of a particle in SHM is equal to

a)
$$\frac{v_{\text{max}}}{2}$$
 b) $\frac{\pi v_{\text{max}}}{2}$ c) $\frac{v_{\text{max}}}{2\pi}$ d) $\frac{2v_{\text{max}}}{\pi}$