CLASS : XITH DATE :

(a)

Solutions

PRACTICE PROBLEM

SUBJECT : PHYSICS DPP NO. : 10

Topic :- OSCILLATIONS

1 **(b)**

 $T \propto \sqrt{l}$, : effective length $l_{\text{sitting}} > l_{\text{standing}}$

2

Let the equations of two mutually perpendicular SHM's same frequency be $x = a_1 \sin \omega t$ and $y = a_2 \sin (\omega t + \emptyset)$

Then, the general equation of Lissajous figure can be obtained

as
$$\frac{x^2}{a_1^2} + \frac{y^2}{a_2^2} - \frac{2xy}{a_1a_2} \cos \phi = \sin^2 \phi$$

For $\phi = 0^\circ : \frac{x^2}{a_1^2} + \frac{y^2}{a_2^2} - \frac{2xy}{a_1a_2} = 0$

$$\Rightarrow \left[\frac{x}{a_1} - \frac{y}{a_2}\right]^2 = 0 \Rightarrow \frac{x}{a_1} = \frac{y}{a_2} \Rightarrow y = \frac{a_2}{a_1} x$$

This is an equation of a straight line passing through origin.

3

(a)

In this case springs are in parallel, so $k_{eq} = k_1 + k_2$

and
$$\omega = \sqrt{\frac{k_{eq}}{m}} = \sqrt{\frac{k_1 + k_2}{m}}$$

4

$$x = A \sin(\omega + \pi/2) = A \cos \omega t$$

$$\therefore \cos \omega t = x/A \text{ and } \sin \omega t = \sqrt{1 - (x^2/A^2)}$$

$$y = A \sin 2\omega t = \sqrt{1 - (x^2/\Delta A^2)}$$

$$y = A \sin 2\omega t = 2A \sin \omega t \cos \omega t$$

or $y^2 = 4 A^2 \sin^2 \omega t \cos^2 \omega t$

$$= 4A^2 \times \frac{x^2}{A^2} \times \left(\frac{A^2 \cdot x^2}{A^2}\right) = 4x^2 \left(1 - \frac{x^2}{A^2}\right)$$

5 **(d)**

(a)

The time period of oscillation of a spring does not depend on gravity

6

The standard equation in SHM is

$$x = a\cos(\omega t + \emptyset) \qquad \dots (i)$$

Where *a* is amplitude, ω the angular velocity and (ϕ) the phase difference.

Also, $\omega = \frac{2\pi}{T}$ where *T* is periodic time. So, Eq. (i) becomes $x = a\cos\left(\frac{2\pi t}{T} + \emptyset\right)$...(ii) Given, equation is $x = 0.01\cos\left(\frac{2\pi t}{2} + \frac{\pi}{4}\right)$...(iii) Comparing Eq. (ii) with Eq. (iii), we get $\frac{2\pi t}{T} = \frac{2\pi t}{2}$ $\Rightarrow T = 2s$ So, frequency $n = \frac{1}{T} = \frac{1}{2} = 0.5$ Hz

7

When lift falls freely effective acceleration and frequency of oscillations become zero $g_{eff} = 0 \Rightarrow T' = \infty$, hence a frequency = 0

8

When the force *F* is applied to one side of block A, let the upper face of *A* be displaced through distance ΔL

Then

(a)

(d)

$$\rightarrow A$$

$$B$$

$$B$$

$$\eta = \frac{F/L^2}{\Delta^{L/L}}$$
 or $F = \eta L \Delta L$...(i)

So, $F \propto \Delta L$ and this force is restoring one. So, if the force is removed, the block will execute SHM

From Eq. (i) spring factor $= \eta L$ Here, inertia factor = M

$$\therefore$$
 Time period, $T = 2\pi \sqrt{\frac{M}{\eta L}}$

9

(d)

$$\frac{T'}{T} = \sqrt{\frac{g}{g'}} = \sqrt{\left[\frac{g}{g(1-\frac{1}{10})}\right]} = \sqrt{\frac{10}{9}}$$

$$\Rightarrow \quad T' = \sqrt{\frac{10}{9}}T$$
(b)

10

$$\frac{d^2x}{dt^2} = -\alpha x \qquad ...(i)$$

We know,

$$a = \frac{d^2 y}{dt^2} = -\omega^2 x \qquad \dots (ii)$$

From Eqs.(i) and (ii), we have
$$\omega^2 = \alpha$$
$$\omega = \sqrt{\alpha}$$
or
$$\frac{2\pi}{T} = \sqrt{\alpha}$$
$$\therefore \qquad T = \frac{2\pi}{\sqrt{\alpha}}$$
11 (c)
Time period
$$T = 2\pi \sqrt{\frac{m}{k}}$$
$$\therefore \qquad mg = kx$$
$$\therefore \qquad T = 2\pi \sqrt{\frac{x}{g}}$$
$$(0.5)^2 = 4\pi^2 \times \sqrt{\frac{x}{10}}$$
$$\frac{(0.5)^2 \times 9.8}{4 \times 3.14 \times 3.14} = x$$
$$x = 0.0621 \text{ m}$$
$$x = 6.2 \text{ cm}$$

12

(a)

 \Rightarrow

(c)

Given that, the time period of particle A = T and the time period of particle $B = \frac{5T}{4}$ Hence, the time difference $(\Delta T) = \frac{5T}{4} - T$ $\Delta T = \frac{T}{4}$...(i) ⇒

The relation between phase difference and time difference is

$$\Delta \phi = \frac{2\pi}{T} \Delta T$$
$$\Delta \phi = \frac{2\pi}{T} \times \frac{T}{4}$$
$$\Delta \phi = \frac{\pi}{2}$$

13

15

As *X* and *Y* have negligible mass, both the spring balances read the same force 8kg or 8kg (c)

If a spring of spring constant k is divided into n equal parts, the spring constant of each part becomes *nk*. So, effective spring constant

$$k = k_1 + k_2$$
$$= 4k + 4k = 8k$$

As springs and supports (M_1 and M_2) are having negligible mass. Whenever springs pull the massless supports, springs will be in natural length. At maximum compression, velocity of B will be zero

And by energy conservation

$$\frac{1}{2}(4K)y^2 = \frac{1}{2}Kx^2 \Rightarrow \frac{y}{x} = \frac{1}{2}$$
(a)

17

16

$$4_{\rm max} = \omega^2 a$$

(c)

(d)

19

Let displacement equation of particle executing SHM is

 $y = a \sin \omega t$

As particle travels half of the amplitude from the equilibrium position, so $y = \frac{a}{2}$

Therefore,
$$\frac{u}{2} = a\sin\omega t \Rightarrow \sin\omega t = \frac{1}{2} = \sin\frac{\pi}{6}$$

 $\Rightarrow \omega t = \frac{\pi}{6} \Rightarrow t = \frac{\pi}{6\omega} \Rightarrow t = \frac{\pi}{6\left(\frac{2\pi}{T}\right)} \left(As\ \omega = \frac{2\pi}{T}\right)$
 $\Rightarrow t = \frac{T}{12}$

Hence, the particle travels half of the amplitude from the equilibrium in $\frac{T}{12}s$

20

Let *r* be the amplitude of oscillation and *T* be the time period in SHM. Then total distance travelled in time T = 4r

$$\therefore \text{ Average velocity, } v_{av} = \frac{4t}{T} = \frac{4r}{2\pi/\omega}$$
$$= \frac{2r\omega}{\pi} = \frac{2v_{\text{max}}}{\pi}$$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	В	А	A	С	D	A	A	D	D	В
Q.	11	12	13	14	15	16	17	18	19	20
A.	С	А	С	В	С	С	A	А	С	D