


water and given that the density of the bob is $(4/3 \times 1000 \text{ kg} - \text{m}^3)$. What relationship between *t* and *t*₀ is true?

a)
$$t = t_0$$
 b) $t = t_0/2$ c) $t = 2t_0$ d) $t = 4t_0$

3. As a body performs S.H.M., its potential energy *U*. Varies with time as indicated in

4. Two simple pendulum of length 0.5 m and 20 m respectively are given small linear displacement in one direction at the same time. They will again be in the phase when the pendulum of shorter length has completed... oscillations.
a) 5 b) 1 c) 2 d) 3

5.	A simple harmonic oscillator has a period of 0.01 s and an amplitude of 0.2 m . The magnitude of the velocity in m sec ⁻¹ at the centre of oscillation is			
	a) 20π	b)100	c) 40 <i>π</i>	d)100π
6.			f one force and T_2 under the forces are acting in c) $T_1^2 + T_2^2$	
7.	For a simple pendulum a) Hyperbola	the graph between <i>L</i> ar b) Parabola	nd <i>T</i> will be c) A curved line	d) A straight line
8.	A mass of 4 kg suspended from a spring of force constant 800 Nm^{-1} executes simple harmonic oscillations. If the total energy of the oscillator is 4 <i>J</i> , the maximum acceleration (in ms^{-2}) of the mass is			
	a) 5	b)15	c) 45	d)20
9.		ant <i>k</i> is cut into two piec ece will have a force con b) (<mark>3/2)k</mark>	-	s double the length of the d) 6 <i>k</i>
10.	There is a body having force $F = -Kx$, where a) K , x		g S.H.M. with amplitude of the total energy of body c) <i>K, a, x</i>	_
11.	. If a body of mass 0.98 kg is made to oscillate on a spring of force constant 4.84 N/m , the angular frequency of the body is			
	a) 1.22 <i>rad/s</i>	b)2.22 rad/s	c) 3.22 <i>rad/s</i>	d)4.22 <i>rad/s</i>
12.	2. The amplitude of vibration of a particle is given by $a_m = (a_0)/(a\omega^2 - b\omega + c)$; where $a_{0,a,b}$ and c are positive. The condition for a single resonant frequency is a) $b^2 = 4ac$ b) $b^2 > 4ac$ c) $b^2 = 5ac$ d) $b^2 = 7ac$			
	a) $b^{-} = 4ac$	$DJD^{-} > 4ac$	c) $b^2 = 5ac$	$a_{J}b^{2} = 7ac$
13.	3. The period of oscillation of a simple pendulum of constant length at earth surface is <i>T</i> . Its period inside a mine is			
	a) Greater than T	b) Less than T	c) Equal to T	d) Cannot be compared
14. In a simple pendulum, the period of oscillation T is related to length of the pendulum l as				
	a) $\frac{l}{T}$ = constant	b) $\frac{l^2}{T} = \text{constant}$	c) $\frac{l}{T^2}$ - constant	d) $\frac{l^2}{T^2}$ = constant

15. Starting from the origin a body oscillates simple harmonically with a period of 2 s. After what time will its kinetic energy be 75% of the total energy?

a)
$$\frac{1}{6}s$$
 b) $\frac{1}{4}s$ c) $\frac{1}{3}s$ d) $\frac{1}{12}s$

16. A mass *m* is suspended from a spring of length *l* and force constant *K*. The frequency of vibration of the mass is f_1 . The spring is cut into two equal parts and the same mass is suspended from one of the parts. The new frequency of vibration of mass is f_2 . Which of the following relations between the frequencies is correct

a)
$$f_1 = \sqrt{2}f_2$$
 b) $f_1 = f_2$ c) $f_1 = 2f_2$ d) $f_2 = \sqrt{2}f_1$

17. How does time period of a pendulum very with length?

a)
$$\sqrt{l}$$
 b) $\sqrt{\frac{l}{2}}$ c) $\frac{1}{\sqrt{l}}$ d) 2l

18. A particle is vibrating in a simple harmonic motion with an amplitude of 4 *cm*. At what displacement from the equilibrium position, is its energy half potential and half kinetic a) 1 *cm* b) $\sqrt{2}$ *cm* c) 3 *cm* d) $2\sqrt{2}$ *cm*

19. A simple pendulum has a time period T_1 when on the earth's surface and T_2 when taken to a height 2*R* above the earth's surface where *R* is the radius of the earth. The value of (T_1/T_2) is

- a) 1/9 b) 1/3 c) $\sqrt{3}$ d) 3
- 20. A ball of mass (m)0.5 kg is attached to the end of a string having length (L)0.5 m. The ball is rotated on a horizontal circular path about vertical axis. The maximum tension that the string can bear is 324 *N*. The maximum possible value of angular velocity of ball (in radian/s) is

