

$$= \rho Vg - \rho' Vg = (\rho - \rho') Vg$$
where $\rho' = \text{density of bob,}$
 $\rho = \text{density of water}$
 \therefore $g_{\text{eff}} = \left(\frac{\rho - \rho}{\rho}\right)g = \left(1 - \frac{\rho'}{\rho}\right)g$
 \therefore $t = 2\pi \sqrt{\left[\left(\frac{1}{1 - \frac{\rho'}{\rho}\right)g}\right]}$...(ii)
Thus, $\frac{t}{t_0} = \sqrt{\left[\left(\frac{1}{1 - \frac{1}{(1 - \frac{\sigma}{\rho})}\right]}\right]}$
 $= \sqrt{\left(\frac{4}{4 - 3}\right)} = 2$
 \Rightarrow $t = 2t_0$
(b)
PE varies from zero to maximum. It is always positive sinusoidal function
(a)
Let T_1, T_2 be the time period of shorter length and longer length pendulums respectively.
Ads per question, $nT_1 = (n - 1)T_2$;
So $n2\pi \sqrt{\frac{0.5}{g}} = (n - 1)2\pi \sqrt{\frac{20}{g}}$
or $n = (n - 1)\sqrt{40} \approx (n - 1)6$
Hence, after 5 oscillations they will be in same phase
(c)
At centre $v_{\text{max}} \Rightarrow aw = a \frac{2\pi}{T} = \frac{0.2 \times 2\pi}{0.01} = 40\pi$

$$F_{1} = \frac{m4\pi^{2}a}{\pi^{2}} \text{ and } F_{2} = \frac{m4\pi^{2}a}{T_{2}^{2}}$$

$$F = F_{1} + F_{2} = \frac{4\pi^{2}ma}{T_{1}^{2}} + \frac{4\pi^{2}ma}{T_{2}^{2}}$$

$$= 4\pi^{2}ma\left(\frac{1}{T_{1}^{2}} + \frac{1}{T_{2}^{2}}\right)$$

$$Or \quad \frac{4\pi^{2}ma}{T^{2}} = 4\pi^{2}ma\left(\frac{1}{T_{1}^{2}} + \frac{1}{T_{2}^{2}}\right)$$

$$Or \quad \frac{1}{T^{2}} = \frac{1}{T_{1}^{2}} + \frac{1}{T_{2}^{2}}$$

$$Or \quad \frac{1}{T^{2}} = \frac{T_{1}^{2} + T_{2}^{2}}{T_{1}^{2}T_{2}^{2}} \text{ or } T^{2} = \frac{T_{1}^{2}T_{2}^{2}}{T_{1}^{2} + T_{2}^{2}}$$

$$(b)$$

$$T = 2\pi\sqrt{\frac{l}{g}} \Rightarrow l \propto T^{2} \text{ [Equation of parabola]}$$

(d)

Here, $m = 4kg; k = 800Nm^{-1}; E = 4J$ In SHM, total energy is $E = \frac{1}{2}kA^2$ where A is the amplitude of oscillation $\therefore 4 = \frac{1}{2} \times 800 \times A^2$ $A^2 = \frac{8}{800} = \frac{1}{100}$ $\Rightarrow A = \frac{1}{10}m = 0.1m$ Maximum acceleration, $a_{max} = \omega^2 A$ $=\frac{k}{m}A$ $\left[\because\omega=\sqrt{\frac{k}{m}}\right]$ $=\frac{800Nm^{-1}}{4kg}\times 0.1m=20ms^{-2}$ (b) K₂ *l*₂=1/3 Force constant $(k) \propto \frac{1}{\frac{1}{\text{Length of spring}}}$ $\Rightarrow \frac{K}{K_1} = \frac{l_1}{l} = \frac{\frac{2}{3}l}{l} \Rightarrow K_1 = \frac{3}{2}K$ 10 (b) Total energy $U = \frac{1}{2}Ka^2$ (b) 11 $\omega = \sqrt{k/m} = \sqrt{\frac{4.84}{0.98}} = 2.22 \ rad/s$ 12 (a) For resonance amplitude must be maximum which is possible only when the denominator of expansion is zero *i.e.* $a\omega^2 - b\omega + c = 0 \Rightarrow \omega = \frac{+b \pm \sqrt{b^2 - 4ac}}{2a}$ For a single resonant frequency, $b^2 = 4ac$ 13 (a) Inside the mine *g* decreases

Hence from $T = 2\pi \sqrt{\frac{l}{q}}$; *T* increase

9

$$T = 2\pi \sqrt{\frac{l}{g}} \Rightarrow \frac{l}{T^2} = \frac{g}{4\pi^2} = \text{constant}$$
(a)

15

KE of a body undergoing SHM is given by $KE = \frac{1}{2}m\omega^2 A^2 \cos^2 \omega t$ and $KE_{max} = \frac{m\omega^2 A^2}{2}$ [symbols represent standard quantities] From given information

$$KE = (KE_{max}) \times \frac{75}{100}$$

$$\Rightarrow \qquad \frac{m\omega^2 A^2}{2} \cos^2 \omega t = \frac{m\omega^2 A^2}{2} \times \frac{3}{4}$$

$$\Rightarrow \qquad \cos \omega t = \pm \frac{\sqrt{3}}{2}$$

$$\Rightarrow \qquad \omega t = \frac{\pi}{6}$$

$$\Rightarrow \qquad \frac{2\pi}{T} \times t = \frac{\pi}{6}$$

$$\Rightarrow \qquad t = \frac{T}{12} = \frac{1}{6} s$$
(d)

16

When spring is cut into two equal parts then spring constant of each part will be 2*K* and so using $n \propto \sqrt{K}$, new frequency will be $\sqrt{2}$ times, *i.e.* $f_2 = \sqrt{2} f_1$

(a)

Time period of pendulum $T = 2\pi \sqrt{\frac{l}{g}}$ $\therefore \qquad T \propto \sqrt{l}$

18

(d) Let x be the point where K.E. = P.E. Hence $\frac{1}{2}m\omega^2(a^2 - x^2) = \frac{1}{2}m\omega^2x^2$

$$\Rightarrow 2x^2 = a^2 \Rightarrow \frac{a}{\sqrt{2}} = \frac{4}{\sqrt{2}} = 2\sqrt{2} \ cm$$
(d)

19

The periodic time of a simple pendulum is given by,

$$T = 2\pi \sqrt{\frac{l}{g}}$$

When taken to height 2R.

$$g' = g\left(1 + \frac{h}{R_e}\right)^2$$
$$= g\left(1 + \frac{2R}{R}\right)^{-2} = g(3)^{-2}$$
$$\therefore \qquad \frac{T_1}{T_2} = \sqrt{\frac{1}{3^2}}$$
$$\implies \qquad T_2 = 3T_1 \Rightarrow \frac{T_1}{T_2} = \frac{1}{3}$$

20

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	С	С	В	A	С	D	В	D	В	В
Q.	11	12	13	14	15	16	17	18	19	20
A.	В	A	A	С	A	D	A	D	D	D

