

CLASS : XIIth DATE : SUBJECT : CHEMISTRY DPP NO. : 2

Topic :-organic chemistry - some basic principles and techniques

1. The ease of dehydrohalogenation of alkyl halide with alcoholic KOH is
a) $3^{\circ} < 2^{\circ} < 1^{\circ}$ b) $3^{\circ} > 2^{\circ} > 1^{\circ}$ c) $3^{\circ} < 2^{\circ} > 1^{\circ}$ d) $3^{\circ} > 2^{\circ} < 1^{\circ}$

2. Lactic acid in which a methyl group, a hydroxyl group, a carboxylic acid group and a hydrogen atom are attached to a central carbon atom shows optical isomerism due to the molecular geometry at the :

- a) Carbon atom of the methyl group
- b) Carbon atom of the carboxylic acid group
- c) Central carbon atom
- d) Oxygen of the hydroxyl group
- 3. Which of the following process is suitable for the purification of aniline?
 - a) Simple distillation

c) Fractional crystallisation d) Steam distillation

4. Maleic and fumaric acids are :
a) Tautomersa) Geometrical isomers c) Chain isomersb) Geometrical isomers

b) Fractional distillation

5. $CH_3Br + Nu^- \rightarrow CH_3 - Nu + Br^-$ The decreasing order of the rate of the above reaction with nucleophiles (Nu⁻) *A* to *D* is :

 $[Nu^{-} = (A)PhO^{-}, (B)AcO^{-}, (C)HO^{-}, (D)CH_{3}O^{-}]$ a) D > C > A > B b) D > C > B > A c) A > B > C > D d) B > D > C > A

6. Which one is least reactive in a nucleophile substitution reaction? a) CH_3CH_2Cl b) $CH_2 = CHCH_2Cl$ c) $CH_2 = CHCl$ d) $(CH_3)_3CCl$

7. In methanol solution, bromine reacts with ethylene to yield $BrCH_2CH_2OCH_3$ in addition to 1,2-dibromoethane because :

- a) The intermediate carbocation may react with Br^- or CH_3OH
- b) The methyl alcohol solvolates the bromine
- c) The reaction follows Markownikoff's rule
- d) This is a free radical mechanism

	umber of tertiary carl) 1	bon atoms in tertiary bu b) 2	ityl alcohol is : c) Zero	d)4			
-		-	-	,			
	9. Which step is chain propagation step in the following mechanism?						
(i) $\operatorname{Cl}_2 \xrightarrow{hv} \operatorname{Cl}^{\bullet} + \operatorname{Cl}^{\bullet}$							
(ii) $\operatorname{Cl}^{\bullet} + \operatorname{CH}_{4} \longrightarrow \operatorname{CH}_{3} + \operatorname{HCl}$							
(iii) $Cl^{\bullet} + Cl^{\bullet} \longrightarrow Cl_2$ (iv) $CH_3 + Cl^{\bullet} \longrightarrow CH_3Cl$							
	$H_3 + CI \longrightarrow CH_3 CI$	b)(ii)	c) (iii)	d) (iv)			
aj) (1)	bj(li)					
10. The IUPAC name of the compound $CH_3 - N \equiv C$ is :							
a)) Ethane nitrile	b) Methane isonitrile	c) Ethane isonitrile	d) None of these			
11.	IUPAC name of						
$CH_3CH_2C(Br) = CH - Cl$ is							
-) 2-bromo-1-chloro bu		b) 1-chloro-2-bromo butene-1				
C)) 3-chloro-2-bromo bເ	itene-2	d) None of the above				
12. Which of the following und <mark>ergoe</mark> s nucleophilic substitution exclusively S _N 1 mechanism?							
a)) Benzyl chloride	b) I <mark>sopro</mark> pyl chloride	c) Chlorobenzene	d) Ethyl chloride			
13. The sigma bond energy of C—H bond in C_2H_6 is :							
) 99 kcal	b) 1 <mark>40 k</mark> cal	c) 200 kcal	d) 60 kcal			
	he general formula C _n) Diketones	H _{2n} O ₂ could be for oper b)Carboxylic acids	c) Diols	d) Dialdehydes			
aj	J Directories	b) carboxy ne actus		u) Dialucity ucs			
	-	-	nechanism of Cannizzar	o's reaction is			
	-	transfer of H [–] and transf sfer of H ⁺ and nucleoph					
-	b) Transfer of H [–] , transfer of H ⁺ and nucleophilic attack c) Transfer if H ⁺ , nucleophilic attack and transfer of H [–]						
d) Electrophilic attack by OH [–] , transfer of H ⁺ and transfer of H [–]							
16. Examine the following statements regarding $S_N 2$ reaction							
(1) The rate of reaction is independents of concentration of nucleophile							
(2) The nucleophile attacks the carbon atom on the side of molecule opposite to the group being							
displaced (3) The reaction proceeds with simultaneous bond formation and rupture							
Which of the above written statements is correct?							
a)) 1, 2	b) 1, 3	c) 1, 2, 3	d) 2, 3			
17. Propanol and propanone are							

a) Functional iso	mers b)Enantiomers	c) Chain isomers	d)Structural isomers		
18. Diastereomers caa) Fractional distd) All of these	1 5	Simple distillation	c) Electrophoresis		
19. Angle strain in cy a) 24°44'	vclopropane is b) 9°44'	c) 44'	d)-5°16′		
20. The function of AlCl ₃ in Friedel-Craft's reaction is					

a) To absorb HCl b) To absorb water c) To produce nucleophiled) To produce electrophile

