

10.	The mass defect in particular nuclear reaction if 0.3 g. The amount of energy liberated in			
	kilowatt hour is (Velocity of light = $3 \times 10^8 \mathrm{ms}^{-1}$)			
	a) 1.5 $\times 10^{6}$	b) 2.5 \times 10 ⁶	c) 3×10^{6}	d) 7.5×10^{6}
11.	An electron jumps from the 4 th orbit to the 2 nd orbit of hydrogen atom. Given the Rydberg's			
	constant $R = 10^5 cm^{-1}$. The frequency in Hz of the emitted radiation will be			
	a) $\frac{3}{16} \times 10^5$	b) $\frac{3}{16} \times 10^{15}$	c) $\frac{9}{16} \times 10^{15}$	d) $\frac{3}{4} \times 10^{15}$
12.	The electron in the hydrogen atom jumps from excited state $(n = 3)$ to its ground state $(n = 3)$			
	and the photons thus emitted irradiate a photosensitive material. If the work function of the			
	material is 5.1 eV, the stopping potential is estimated to be (the energy of the electron in n^{in}			
	state $E_n = -\frac{13.6}{n^2} eV$)			
	a) 5.1 V	b) 12.1 V	c) 17.2 V	d)7 V
13.	The number of α -particles and β – particles respectively emitted in the reaction ${}_{88}A^{196} \rightarrow {}_{78}$			
	B^{164} are			
	a) 8 and 8	b)8 and 6	c) 6 and 8	d) 6 and 6
14.	An electron passing through a potential difference of 4.9 <i>V</i> collides with a memory atom and transfers it to the first excited state. What is the wavelength of a photon corresponding to th			
	transition of the mercury atom to its normal state			
	a) 2050 Å	b) 2240 Å	c) 2525 Å	d) 2935 Å
15.	The half -life period of	a radioactive substance	is 3 days. Three fourth o	of substance decays in
	a) 3 days	b) 6 days	c) 9 days	d)12 days
16.	What is the Q-value of the reaction			
	$P + L_1 \rightarrow He + He$	111 411, and 71; and 1 00	2025 - 4.002(02	7.01(004
	The atomic masses of ² H, ³ He and ³ Li are 1.007825 u, 4.002603 u and 7.016004 u			
	a) 17 35 MeV	b) 18.06 MeV	c) 177 35 MeV	d) 170 35 MeV
17	If one starts with one curie of radioactive substance $(T_{t,n} - 12hr_s)$ the activity left after a			
1/.	period of 1 week will be about			
	a) 1 curie	b) 120 micro curie	c) 60 micro curie	d)8 mili curie
18.	If the half life of a radio	bactive sample is 10 hou	<i>rs</i> , its mean life is	
	a) 14.4 <i>hours</i>	b) 7.2 hours	c) 20 hours	d)6.93 hours
19.	The half-life of ²¹⁵ At is	100 μs. The time taken	for the radioactivity of a	sample of ²¹⁵ At to
	decay to $\frac{1}{16}$ th of its initial value is			
	a) 400 µs	b) 6.3 μs	c) 40 µs	d) 300 µs
20.	Half life of a radio-active substance is 20 minutes. The time between 20% and 80% decay will			
	be			
	a) 20 minutes	b)40 minutes	c) 30 minutes	d)25 minutes