

Subject: PHYSICS DPP No.: 9 Class: XIIth

Date:

		Topi	c :-Nuclei		
1.	A radioactive sample of U^{238} decays to Pb through a process for which half life is 4.5×10^9				
	<i>years</i> . The ratio of number of nuclei of Pb to U^{238} after a time of 1.5×10^9 years (given $2^{1/3}$				
	= 1.26)				
	a) 0.12	b) 0.26	c) 1.2	d) 0.37	
2.	00 1				
	a) $1.67 \times 10^{-27} gm$, $9.30 \ MeV$ b) $1.67 \times 10^{-27} kg$, $930 \ MeV$				
	c) $1.67 \times 10^{-27} kg$, $1 MeV$,	d) $1.67 \times 10^{-34} kg$, $1 MeV$	
3.	Hydrogen atom from excited state comes to the ground state by emitting a photon of				
	wavelength λ . If R is the Rydberg constant, the principal quantum number n of the excited state				
	is				
	λR	λ	λR^2	λR	
	a) $\sqrt{\frac{\lambda R}{\lambda R - 1}}$	$\sqrt{\lambda R-1}$	$\sqrt{\lambda R-1}$	$\sqrt[4]{\lambda-1}$	
4.	Energy generation in s	stars i <mark>s ma</mark> inly due t	0		
	a) Chemical reactions		b) Fission of he	avy nuclei	
	c) Fusion of light nucle	ei	d) Fusion of hea	avy nuclei	
5.	A radioactive nucleus undergoes α -emission to form a stable element. What will be the recoil				
	velocity of the daughter nucleus if V is the velocity of α -emission and A is the atomic mass of				
	radioactive nucleus				
	a) $\frac{4V}{A-4}$	$\frac{2V}{}$	$c) \frac{4V}{}$	$d) = \frac{2V}{V}$	
			71 1	11 1 1	
6.	When a slow neutron goes sufficiently close to a U^{235} nucleus, then the process that takes place				
	is				
_	a) Fission of U^{235}	•	on c) Fusion of U^{23}		
7.	The third line of Balmer series of an ion equivalent to hydrogen atom has wavelength of $108.5 nm$. The ground state energy of an electron of this ion will be				
	· ·	•			
0	a) 3.4 <i>eV</i>	b) 13.6 <i>eV</i>	c) 54.4 <i>eV</i>	d) 122.4 eV	
8.	A nucleus of mass 214 amu in free state decays to emit an α -particle. Kinetic energy of the α -particle emitted is 6.7 <i>MeV</i> . The recoil energy (in <i>MeV</i>) of the daughter nucleus is				
	-		,	_	
0	a) 1.0	b) 0.5	c) 0.25	d) 0.125	
9.	The binding energy of nucleus is a measure of its				
	a) Charge	b) Mass	c) Momentum	d) Stability	

- 10. Suppose an electron is attracted towards the origin by a force $\frac{k}{r}$ where 'k' is a constant and 'r' is the distance of the electron from the origin. By applying Bohr model to this system, the radius of the n^{th} orbital of the electron is found to be $^{\prime}r_{n}^{\prime}$ and the kinetic energy of the electron to be $^{\prime}$ T_n' . Then which of the following is true
 - a) T_n independent of $n, r_n \propto n$

b)
$$T_n \propto \frac{1}{n}$$
, $r_n \propto n$

c)
$$T_n \propto \frac{1}{n}, r_n \propto n^2$$

d)
$$T_n \propto \frac{1}{n^2}$$
, $r_n \propto n^2$

11. v_1 is the frequency of the series limit of Lyman series, v_2 is the frequency of the first line of Lyman series and v_3 is the frequency of the series limit of the Balmer series. Then

a)
$$v_1 - v_2 = v_3$$

a)
$$v_1 - v_2 = v_3$$
 b) $v_1 = v_2 - v_3$

c)
$$\frac{1}{v_2} = \frac{1}{v_1} + \frac{1}{v_3}$$
 d) $\frac{1}{v_1} = \frac{1}{v_2} + \frac{1}{v_3}$

$$d)\frac{1}{v_1} = \frac{1}{v_2} + \frac{1}{v_3}$$

- 12. Which of the following has the mass closest in value to that of the positron $(1 \ a.m.u = 931 \ MeV)$
 - a) Proton
- b) Electron
- c) Photon
- d) Neutrino
- 13. The set which represents the isotope, isobar and isotone respectively is

a)
$$H^2$$
 a) H^3 , $H^$

c)
$$\binom{2He^3}{a^{198}}$$
, $\binom{1}{4}H^2$, $\binom{1}{4}H^3$ and $\binom{79Au^{197}}{a^{198}}$, $\binom{80}{4}H^3$

d)
$${}_{g^{198}}^{(_{1}H^{2},_{1}H^{3}),(_{2}He^{3},_{1}H^{3})}$$
 and $(_{79}Au^{197},_{80}H^{3})$

- 14. The nucleus ${}_{6}C^{12}$ absorbs an energetic neutron and emits a beta particle (β). The resulting nucleus is
 - a) $_{7}N^{14}$
- b) $_{7}N^{13}$
- c) $_{5}B^{13}$
- 15. The mass defect in a particular nuclear reaction is 0.3 grams. The amount of energy liberated in kilowatt hours is

(Velocity of light = $3 \times 10^8 m/s$)

- a) 1.5×10^6
- b) 2.5×10^6
- c) 3×10^6
- d) 7.5×10^6

- 16. Consider the following statements
 - S1: The nuclear force is independent of the charge of nucleons
 - S2: The number of nucleons in the nucleus of an atom is equal to the number of electrons in
 - S3: All nuclei have masses that are less than the sum of the masses of constituent nucleons
 - S4: Nucleons belong to the family of leptons while electrons are members of the family of hadrons

Choose the correct statement(s) from these

- a) S1 only
- b) S1 and S4
- c) S2, S3 and S4
- d)S1 and S3

- 17. Alpha rays emitted from a radioactive substance are
 - a) Negatively charged particles
 - b) Ionized hydrogen nuclei
 - c) Doubly ionized helium atom
 - d) Unchanged particles having the mass equal to proton

- 18. A radioactive sample at any instant has its disintegration rate 5000 disintegrations per minute. After 5 min, the rate is 1250 disintegrations per min. Then, the decay constant (per minute) is
 - a) 0.4 In 2
- b) 0.2 In 2
- c) 0.1 In 2
- d) 0.8 In 2

- 19. β -decay means emission of electron from
 - a) Innermost electron orbit

b) A stable nucleus

c) Outermost electron orbit

- d) Radioactive nucleus
- 20. Excitation energy of a hydrogen like ion in its first excitation state is 40.8 *eV*. Energy needed to remove the electron from the ion in ground state is
 - a) 54.4 *eV*
- b) 13.6 eV
- c) 40.8 eV
- d) 27.2 *eV*

