Class: XIIth
Solutions
Subject : PHYSICS
DPP No. : 9

Topic :-NUCLEI

1
(b)

Here $\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n}=\left(\frac{1}{2}\right)^{1 / 3}$
Where $n=$ Number of half lives $=\frac{1}{3}$
$\Rightarrow \frac{N}{N_{0}}=\frac{1}{1.26} \Rightarrow \frac{N_{U}}{N_{P b}+N_{U}}=\frac{1}{1.26}$
$\Rightarrow N_{P b}=0.26 N_{U} \Rightarrow \frac{N_{P b}}{N_{U}}=0.26$
(a)

According to Rydberg's formula
$\frac{1}{\lambda}=R\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)$
Here, $n_{f}=1, n_{i}=n$

$$
\therefore \frac{1}{\lambda}=R\left(\frac{1}{1^{2}}-\frac{1}{n^{2}}\right) \Rightarrow \frac{1}{\lambda}=R\left(1-\frac{1}{n^{2}}\right)
$$

Multiplying equation (i) by λ on both sides,
$1=\lambda R\left(1-\frac{1}{n^{2}}\right) \Rightarrow \frac{1}{\lambda R}=1-\frac{1}{n^{2}}$
$\Rightarrow \frac{1}{n^{2}}=1-\frac{1}{\lambda R} \Rightarrow \frac{1}{n^{2}}=\frac{\lambda R-1}{\lambda R} \Rightarrow n=\sqrt{\frac{\lambda R}{\lambda R-1}}$
(c) energy is released
5 (a)

Energy of stars is due to the fusion of light hydrogen nuclei into He . In this process much

According to conservation of momentum $4 v=(A-4) v^{\prime}$
$\Rightarrow v^{\prime}=\frac{4 v}{A-4}$
(c)

For third line of Balmer series $n_{1}=2, n_{2}=5$
$\therefore \frac{1}{\lambda}=R Z^{2}\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]$ gives $Z^{2}=\frac{n_{1}^{2} n_{2}^{2}}{\left(n_{2}^{2}-n_{1}^{2}\right) \lambda R}$
On putting values $Z=2$
From $E=-\frac{13.6 Z^{2}}{n^{2}}=\frac{-13.6(2)^{2}}{(1)^{2}}=-54.4 \mathrm{eV}$
(d)

Using conservation of momentum $P_{\text {daughter }}=P_{\alpha}$
$\Rightarrow \frac{E_{d}}{E_{\alpha}}=\frac{m_{\alpha}}{m_{d}} \Rightarrow E_{d}=\frac{E_{\alpha} \times m_{\alpha}}{m_{d}}=\frac{6.7 \times 4}{214}=0.125 \mathrm{MeV}$
(d)
B.E. per nucleon \propto stability
(a)

According to Bohr theory, $m v r=n \frac{h}{2 \pi} \Rightarrow v=\frac{n h}{2 \pi m r}$ and $\frac{m v^{2}}{r} \propto \frac{k}{r} \Rightarrow \frac{m}{r}\left(\frac{n^{2} h^{2}}{4 \pi^{2} m^{2} r^{2}}\right) \propto \frac{k}{r} \Rightarrow r_{n} \propto n$
Kinetic energy $T=\frac{1}{2} m v^{2}=\frac{1}{2} m\left(\frac{n^{2} h^{2}}{4 \pi^{2} m^{2} r^{2}}\right) \Rightarrow T_{n} \propto \frac{n^{2}}{r^{2}}$
But as $r \propto n$ therefore $T \propto n^{0}$
(a)

For Lyman series $v=R C\left[\frac{1}{1^{2}}-\frac{1}{n^{2}}\right]$
Where $n=2,3,4, \ldots \ldots$.
For the series limit of Lyman series $n=\infty$
$\therefore v_{1}=R C\left[\frac{1}{1^{2}}-\frac{1}{\infty^{2}}\right]=R C \quad \ldots$ (i)
For the first line of Lyman series, $n=2$
$\therefore v_{2}=R C\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}\right]=\frac{3}{4} R C$
For Balmer series $v=R C\left(\frac{1}{2^{2}}-\frac{1}{n^{2}}\right)$
Where $n=3,4,5 \ldots$
For the series limit of Balmer series $n=\infty$
$\therefore v_{3}=R C\left[\frac{1}{2^{2}}-\frac{1}{\infty^{2}}\right]=\frac{R C}{4}$
From equations (i), (ii) and (iii), we get
$v_{1}=v_{2}+v_{3} \Rightarrow v_{1}-v_{2}=v_{3}$
(b)

Positron is the antiparticle of electron
(d)

Nuclides with same atomic number Z but different mass number A are known as isotopes Nuclides with same mass number A but different atomic number Z are known as isobars Nuclides with same neutron number $N=(A-Z)$ but different atomic number Z are known as isotones
${ }_{1} H^{2}$ and ${ }_{1} H^{3}$ are isotopes
${ }_{2} \mathrm{He}^{3}$ and ${ }_{1} \mathrm{H}^{3}$ are isobars
${ }_{79} \mathrm{Au}^{197}$ and ${ }_{80} \mathrm{Hg}^{198}$ are isotones
(b)
${ }_{6} \mathrm{C}^{12}+{ }_{0} n^{1} \rightarrow{ }_{7} \mathrm{~N}^{13}+{ }_{-1} e^{0}+\bar{v}$
(Neutron)
(Beta (Anti
particle) neutrino)
On equating atomic numbers and atomic masses, the atomic number and atomic mass for resulting nucleus is 7 and 13, which is for nitrogen nucleus.
(d)
$E=\Delta m c^{2} \Rightarrow E=\frac{0.3}{1000} \times\left(3 \times 10^{8}\right)^{2}=2.7 \times 10^{13} \mathrm{~J}$
$=\frac{2.7 \times 10^{13}}{3.6 \times 10^{6}}=7.5 \times 10^{6} \mathrm{kWh}$
(d)

The number force is charge independent
No. of nucleons $=$ No. of protons + no. of neutrons $=$ Mass number
All nuclei have masses that are less than the sum of the masses of its constituents. The difference in mass of a nucleus and its constituents is known as mass defect.
Nucleons belong to the family of hadrons while electrons belong to family of leptons

$$
=54.4 \mathrm{eV}
$$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	B	B	A	C	A	A	C	D	D	A		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	A	B	D	B	D	D	C	A	D	A		

