

Class : XIIth Date :

Topic :-Nuclei

1.	The half-life of radon is 3.8 days. How many radon will be left out of 1024 mg after 38 days				
	a) 1 mg	b) 2 mg	c) 3 mg	d)4 mg	
2.	For a radioactive nu	cleus, the mean life is <i>T</i> ,	If the number of decays	per unit time is n at $t = 0$,	
	the number of decays between time 0 and <i>t</i> , is				
	a) $nTe^{-t/T}$	b) $n(1 - e^{-t/T})$	c) $nT(1 - e^{-t/T})$	d) $ne^{-t/T}$	
3.	$_7N^{14}$ is bombarded with $_2$ He ⁴ . The resulting nucleus is $_8O^{17}$ with the emission of				
	a) Neutrino	b) Antineutrino	c) Proton	d)Neutron	
4.	The example of nucl	ear fusion is			
	a) Formation of barium and <mark>krypton from u</mark> ranium				
	b) Formation of helium fro <mark>m hyd</mark> rogen				
	c) Formation of plut	onium <mark>235 f</mark> rom ur <mark>aniur</mark>	n 235		
	d) Formation of wate	er from <mark>hydr</mark> ogen and ox	tygen		
5.	Isotopes are atoms h	aving			
	a) Same number of protons <mark>but d</mark> ifferent number of neutrons				
	b) Same number of neutron <mark>s but</mark> different number of protons				
	c) Same number of p	rotons and neutrons			
	d) None of the above				
6.	If the radius of a nucleus of mass number 3 is <i>R</i> , then the radius of a nucleus of mass number 8				
	is				
	a) 3 <i>R</i>	b)9 <i>R</i>	c) $(27)^{1/2}R$	d) 27 <i>R</i>	
7.	Which of the following radiations has the least wavelength				
	a) X-rays	b)γ-rays	c) β-rays	d)α-rays	
8.	An atomic power nuclear reactor can deliver 300 MW. The energy released due to fission of				
	each nucleus of uranium atom ${ m U}^{238}$ is 170 MeV. The number of uranium atoms fissioned per				
	hour will be	22	20		
	a) 30 \times 10 ²⁵	b) 4 × 10^{22}	c) 10×10^{20}	d) 5 × 10^{15}	
9.	The ratio of the kinetic energy to the total energy of an electron in a Bohr orbit is				
	a) —1	b) 2	c) 1 : 2	d) None of these	
10.). The rad is the correct unit used to report the measurement of				
	a) The ability of a beam of gamma ray photons to produce ions in a target				
	b) The energy delivered by radiation to a target				
	c) The biological effect of radiation				
	d) The rate of decay	of a radioactive source			

11.	. It is easier to ionize hydrogen as compared to deuterium, because				
	a) Hydrogen is lighter than deuterium	b) Atomic number of hy deuterium	ydrogen is lesser than		
	c) Hydrogen is a diatomic gas	d) The statements is wi	rong		
12.	The first line of Balmer series has wavelength 6563 Å. What will be the wavelength of the first				
	a) 1215 4 Å	a) 7500 Å			
10	a) 1215.4 A D) 2500 A	CJ / 500 A	a)600 A		
13.	a) ${}_{1}H^{1}$ and ${}_{1}H^{2}$ b) ${}_{1}H^{2}$ and ${}_{1}H^{3}$	c) ${}_{6}C^{12}$ and ${}_{6}C^{13}$	d) $_{15}P^{30}$ and $_{14}Si^{30}$		
14	If N_0 is the original mass of the substance of ha	If life period $T_{1/2} = 5 ve$	<i>ars</i> then the amount of		
1.11	substance left after 15 years is				
	a) $N_0/8$ b) $N_0/16$	c) $N_0/2$	$d N_0/4$		
15	Mean life of neutron is about	c) ·· 0/ =	uj. 0/ 1		
10.	a) 100 seconds b) 1000 seconds	c) 10 seconds	d)1 seconds		
16.	An element A decays into element C by a two step process				
10.	$A \rightarrow B + _{2}He^{4}$				
	$B \rightarrow C + 2_{-1}e^0$				
	Then				
	a) A and C are isotopes b) A and C are isobars	c) A and B are isotopes	d) A and B are isobars		
17.	In the reaction identify X	, I	,		
	$_{7}N^{14} + \alpha \rightarrow _{8}X^{17} + _{1}p^{1}$				
	a) An oxygen nucleus with <mark>mass</mark> 17	b) An oxygen nucleus w	vith mass 16		
	c) A nitrogen nucleus with <mark>mass</mark> 17	d) A nitrogen nucleus v	vith mass 16		
18.	Ionisation potential of hydr <mark>ogen</mark> atom is 13.6 eV. Hydrogen atoms in the ground state are				
	excited by monochromatic <mark>radia</mark> tion of photon energy 12.1eV. The spectral lines emitted by				
	hydrogen atoms according to Bohr's theory will be				
	a) One b) Two	c) Three	d)Four		
19.	Heavy water is used in a nuclear reactor to				
	a) Absorb the neutrons	b) Slow down the neutr	rons		
	c) Act as coolant	d) None of the above			
20.	A radioactive element A decay into stable element B, initially a fresh sample of A is available. In				
	this sample variation in number of nuclei of B with time is shown by				
	N_0		N_0		
			uj		
	t t	t	t		