Class: XIIth
Date :
Solutions
Subject : PHYSICS
DPP No. : 8

Topic :-NUCLEI

1
(a)

From Rutherford-Soddy law

$$
\begin{aligned}
& N=N_{0}\left(\frac{1}{2}\right)^{n} \\
& n=\frac{38}{3.8}=10
\end{aligned}
$$

The initial quantity of radon $N_{0}=1024 \mathrm{mg}$.
Therefore, the mass of radon left after 10 half-lives is

$$
N=1024 \times\left(\frac{1}{2}\right)^{10}=\frac{1024}{1024}=1 \mathrm{mg} .
$$

(b)
$N=N_{0} e^{-\lambda t}$
$N=n e^{-\lambda t}$
The number of decay between 0 and $t N_{0}-N$
$=n-n e^{-\lambda t}=n\left(1-e^{-\lambda t}\right)=n\left(1-e^{-t / T}\right)$
(c)

The nuclear reactions is as follows

$$
{ }_{7} \mathrm{~N}^{14}+{ }_{2} \mathrm{He}^{4} \rightarrow{ }_{8} \mathrm{O}^{17}+{ }_{q} X^{p}
$$

Conservation of mass number gives

$$
P=14+4-17=1
$$

Conservation of atomic number gives

$$
a=7+2-8=1
$$

Hence, particle is a proton ${ }_{1} \mathrm{H}^{1}$.
4
(b)

$$
{ }_{1} \mathrm{H}^{2}+{ }_{1} \mathrm{H}^{2} \rightarrow{ }_{2} \mathrm{He}^{4}+Q
$$

(a)

For isotopes Z is same and A is different. Therefore the number of neutrons $A-Z$ will also be different
8
(b)

Power $=\frac{\text { energy }}{\text { time }}=300 \times 10^{6} \mathrm{watt}$

$$
=3 \times 10^{8} \mathrm{~J} / \mathrm{s}
$$

$$
\begin{aligned}
170 \mathrm{MeV} & =170 \times 10^{6} \times 1.6 \times 10^{-19} \\
& =27.2 \times 10^{-12} \mathrm{~J}
\end{aligned}
$$

Number of atoms fissioned per second

$$
\begin{aligned}
& =\frac{3 \times 10^{8}}{27.2 \times 10^{-12}} \\
& =\frac{3 \times 10^{20}}{27.2}
\end{aligned}
$$

Number of atoms fissioned per hour

$$
\begin{aligned}
& =\frac{3 \times 10^{20} \times 3600}{27.2} \\
& =\frac{3 \times 36}{27.2} \times 10^{22}=4 \times 10^{22} \mathrm{~m}
\end{aligned}
$$

(a)
K.E. $=-$ (T.E.)
(c)
'Rad' is used to measure biological effect of radiation.
(a)
$\frac{1}{\lambda_{\text {Balmer }}}=R\left[\frac{1}{2^{2}}-\frac{1}{3^{2}}\right]=\frac{5 R}{36}, \frac{1}{\lambda_{\text {Lyman }}}=R\left[\frac{1}{1^{2}}-\frac{1}{2^{2}}\right]=\frac{3 R}{4}$
$\therefore \lambda_{\text {Lyman }}=\lambda_{\text {Balmer }} \times \frac{5}{27}=1215.4 \AA$
(a)
$N=N_{0}\left(\frac{1}{2}\right)^{\frac{t}{T_{1 / 2}}}=N_{0}\left(\frac{1}{2}\right)^{\frac{15}{5}}=\frac{N_{0}}{8}$
(b)

Half life of neutron $T_{1 / 2}=12 \mathrm{~min}$
Mean life $=T_{1 / 2}+44 \%$ of $T_{1 / 2}$
$\approx 17 \mathrm{~min} \approx 1000 \mathrm{sec}$
(a)
A and C are isotopes as their charge number is same
(c)

Energy in excited state $=-13.6+12.1=-1.5 \mathrm{eV}$
$\therefore \frac{-13.6}{n^{2}}=-1.5$
$\therefore n=\sqrt{\frac{13.6}{1.5}}=3$
Number of spectral lines
$=\frac{n(n-1)}{2}=\frac{3(3-1)}{2}=3$
(b)

Heavy water is used in certain type of nuclear where it acts as a neutron moderator to slow down neutrons so that they can react with uranium in the reactor.
(b)
$N=N_{0} e^{-\lambda t}$
Variation of N is exponential

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	A	B	C	B	A	A	B	B	A	C		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	A	A	D	A	B	A	A	C	B	B		

