

Class : XIIth

Date :

Subject : PHYSICS

DPP No. : 7

Topic :-Nuclei								
1.	The ratio of minimum to maximum wavelength in Balmer series is							
	a) 5 : 9	b) 5 : 36	c) 1:4	d)3:4				
2.	The half-life period of radium is 1600 years. Its average life time will be							
	a) 3200 <i>years</i>	b) 4800 <i>years</i>	c) 2319 <i>years</i>	d) 4217 <i>years</i>				
3.	The transition from the state $n=4$ to $n=3$ in a hydrogen like atom result in ultraviolet radiation. Infrared radiation will be obtained in the transition from							
	a) 2→1	b) 3→2	c) 4→2	d)5→4				
4. The count rate of a Geiger-Muller counter for the radiation of a radioactive material of 30 minutes decreases to $\frac{5 \text{ s}^{-1}}{\text{ after 2 hours}}$. The initial count rate was								
	a) $25 s^{-1}$	b) $80 s^{-1}$	c) $625 s^{-1}$	d) $20 s^{-1}$				
5.	In Raman effect, Stoke's lin <mark>es are</mark> spectr <mark>al lin</mark> es having							
	a) Frequency greater than t <mark>hat o</mark> f the o <mark>rigina</mark> l line							
	b) Wavelength equal to tha <mark>t of the origina</mark> l line							
		s than tha <mark>t of t</mark> he origina						
	d) Wavelength greater than that of the original line							
6.	The fraction f of radioactive material that has decayed in time t , varies with time t . The correct							
	variation is given by A B C D D D	oy the curve →						
	a) <i>A</i>	b) <i>B</i>	c) <i>C</i>	d) <i>D</i>				
7.	White light is passed through a dilute solution of potassium permanganate. The spectrum produced by the emergent light is							
	a) Band emission spectrum		b) Line emission sp	b) Line emission spectrum				
	c) Band absorption	n spectrum	d) Line absorption	spectrum				
8.	The ratio of the frequencies of the long wavelength limits of Lyman and Balmer series of hydrogen spectrum is							
	a) 27 : 5	b) 5 : 27	c) 4:1	d) 1 : 4				

9.	A radioactive nucleus of mass M emits a photon of frequency v and the nucleus recoils. The					
	recoil energy will be					
	a) <i>hv</i>	b) $Mc^2 - hv$	c) $\frac{h^2v^2}{2Mc^2}$	d)Zero		
10.	In which of the following decay, the element does not change					
	a) β-decay	b) α-decay	c) γ-decay	d) None of these		
11.	Light energy emitted by		, , , , , , , , , , , , , , , , , , ,	,		
	a) Breaking of nuclei		b) Joining of nuclei			
	c) Burning of nuclei		d) Reflection of solar lig	ght		
12.	A nucleus decays by β^+ -emission followed by $a\gamma$ — emission. If the atomic and mass numbers of					
	the parent nucleus are Z and A respectively, the corresponding numbers for the daughter					
	nucleus are respectively					
	a) $Z-1$ and $A-1$	b) $Z + 1$ and A	c) $Z-1$ and A	d) $Z + 1$ and $A - 1$		
13.		ocess, the negatively cha				
	a) The electrons present inside the nucleus					
	b) The electrons produced as a result of the decay of neutrons inside the nucleus					
	c) The electrons produced as a result of collisions between atoms.					
	d) The electrons orbiting around the nucleus.					
14.	The electron in a hydrogen atom makes a transition from $n = n_1$ to $n = n_2$ state. The time period					
	of the electron in the initial state is eight times that in the final state. The possible values of n_1					
	and n_2 are					
	a) $n_1 = 6$, $n_2 = 2$	b) $n_1 = 2$, $n_2 = 1$	c) $n_1 = 8$, $n_2 = 2$	d) $n_1 = 4$, $n_2 = 2$		
15.	The ratio of the speed of the electron in the first Bohr orbit of hydrogen and the speed of light is					
	equal to (where e,h and c have their usual meanings)					
	a) $2\pi hc/e^2$	b) $e^2h/2\pi c$	c) $e^2 c / 2\pi h$	d) $2\pi e^2/hc$		
16.	In Rutherford scatterin	g ex <mark>perim</mark> ent, what will	be the correct angle for	lpha scattering for an		
	impact parameter $b=0$					
	a) 90°	b) 270°	c) 0°	d) 180°		
17.	For maintaining sustained chain reaction, the following is required					
	a) Protons	b) electrons	c) neutrons	d) positons		
18.	Which of the transitions in hydrogen atom emits a photon of lowest frequency ($n = \text{quantum}$					
	number)					
	a) $n = 2$ to $n = 1$	b) $n = 4$ to $n = 3$	c) $n = 3$ to $n = 1$	d) $n = 4$ to $n = 2$		
19.	The spectral series of the hydrogen spectrum that lies in the ultraviolet region is the					
	a) Balmer series	b) Pfund series	c) Paschen series	d) Lyman series		
20.	The density of uranium is of the order of					
	a) 10^{20}kgm^{-3}	b) 10^{17}kgm^{-3}	c) 10^{14}kgm^{-3}	d) 10^{11}kgm^{-3}		