

8	(c)						
	After t second fractional amount of X left is $\frac{1}{16}$ or $\left(\frac{1}{2}\right)^4$						
	$\therefore t = 4 \times T_{1/2} = 4 \times 50 = 200 \text{ years}$						
9	(d)						
	$_{72}A^{100} \xrightarrow{-\alpha}{}_{70}A_1^{176} \xrightarrow{-\beta}{}_{71}A_2^{176} \xrightarrow{-\alpha}{}$						
	$_{69}A_3^{172} \xrightarrow{\gamma} _{69}A_4^{172}$						
10	(c)						
11	Charge density is uniform inside and then falls rapidly near the surface of the nucleus						
11	(a) Number of protons $-2 + 2 + 6 + 2 + 6 - 19$						
	Number of protons $= 2 + 2 + 6 + 2 + 6 = 18$ Number of poutrons $= 40 - 18 = 22$						
12	(d) $(10 - 22)$						
12	By using $N = N_0 e^{-\lambda t}$ and $\frac{dN}{dt} = -\lambda N$						
	It shows that N decreases exponentially with time						
13	(C)						
	In critical condition, $k=1$. The chain reaction will be steady. The size of the fissionable						
	material used is said to be critical size and its mas the critical mass.						
14	(c)						
	Radius of <i>n</i> th orbit for any hydrogen like atom						
	$r_n = r_0 \left(\frac{n^2}{Z}\right) (r_0 = \text{ radius of first orbit of } H_2 \text{-atom})$						
	If $r_n = r_0 \Rightarrow n = \sqrt{2}$. For $Be^{+++}, Z = 4 \Rightarrow n = 2$						
16	(a)						
	For $n = 1$, maximum number of states $= 2n^2 = 2$ and for $n = 2, 3, 4$, maximum number of states would be 8, 18, 32 respectively, Hence number of possible elements $= 2 + 8 + 18 + 32 = 60$						
17	(b)						
	After one α - emission, the daughter Nucleus reduces in mass number by 4 unit and in						
	atomic number by 2 unit. In β - emission the atomic number of daughter nucleus increases						
	by 1 unit.						
	The reaction can be written as $x^{238} = \frac{8\alpha}{r^{2}} + \frac{x^{206}}{r^{6}} = \frac{-6\beta}{r^{2}} + \frac{x^{206}}{r^{6}} = \frac{1}{r^{2}}$						
	$92U^{230} \rightarrow 76X^{200} \rightarrow 82Y^{200}$						
10	I hus, the resulting nucleus is $_{82}Y^{200}$ ie, $_{82}PD^{200}$.						
19	(a) In the given case, 12 days — 3 half lives Number of atoms left after 3 half live						
	$10 \qquad 10 \qquad 10$						
	$= 6.4 \times 10^{10} \times \frac{10^{20}}{2^3} = 0.8 \times 10^{10}$						
20	(d)						
	Radioactive decay does not depend upon the time of creation.						

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	В	D	C	C	D	А	В	С	D	C		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	А	D	C	C	D	А	В	А	D	D		

