Class: XIIth
Date :
Solutions
Subject : PHYSICS
DPP No. : 6

Topic :-NUCLEI

1
(b)

By using $R=R_{0} A^{1 / 3} \Rightarrow \frac{R_{1}}{R_{2}}=\left(\frac{A_{1}}{A_{2}}\right)^{1 / 3}$
$\Rightarrow \frac{R}{R_{H e}}=\left(\frac{A}{4}\right)^{1 / 3} \Rightarrow(14)^{1 / 3}=\left(\frac{A}{4}\right)^{1 / 3}$
$\Rightarrow A=56$ so $Z=56-30=26$

2

3

4

5

6

7
(d)

Extremely high temperature needed for fusion make KE large enough to overcome repulsion between nuclei.
(c)

Number of lines in absorption spectrum $=(n-1)$
$\Rightarrow 5=n-1 \Rightarrow n=6$
\therefore Number of bright lines in the emission spectrum
$=\frac{n(n-1)}{2}=\frac{6(6-1)}{2}=15$
(c)

From conservation of momentum

$$
\begin{aligned}
4 v & =(A-4) v_{1} \\
v_{1} & =\left(\frac{4 v}{A-4}\right)
\end{aligned}
$$

(d)

Number of α - particles emitted $=\frac{238-222}{4}=4$
This decreases atomic number to $90-4 \times 2=82$
Since atomic number of ${ }_{83} Y^{222}$ is 83 , this is possible of one β - particle is emitted
(a)
${ }_{92} X^{235} \xrightarrow{\alpha}{ }_{90} X^{231} \xrightarrow{-1 e^{0}}{ }_{91} Y^{231}$
(b)

By using $N=N_{0} e^{-\lambda t}$ and $t=\tau=\frac{1}{\lambda}$
Substance remains $=N=\frac{N_{0}}{e}=0.37 N_{0} \simeq \frac{N_{0}}{3}$
\therefore Substance disintegrated $=N_{0}-\frac{N_{0}}{3}=\frac{2 N_{0}}{3}$

8
(c)

After t second fractional amount of X left is $\frac{1}{16}$ or $\left(\frac{1}{2}\right)^{4}$
$\therefore t=4 \times T_{1 / 2}=4 \times 50=200$ years
(d)
${ }_{72} A^{100} \xrightarrow{-\alpha}{ }_{70} A_{1}^{176} \xrightarrow{-\beta}{ }_{71} A_{2}^{176} \xrightarrow{-\alpha}$
${ }_{69} A_{3}^{172} \xrightarrow{\gamma}{ }_{69} A_{4}^{172}$
(c)

Charge density is uniform inside and then falls rapidly near the surface of the nucleus

Number of protons $=2+2+6+2+6=18$
Number of neutrons $=40-18=22$
(d)

By using $N=N_{0} e^{-\lambda t}$ and $\frac{d N}{d t}=-\lambda N$
It shows that N decreases exponentially with time
(c)

In critical condition, $k=1$. The chain reaction will be steady. The size of the fissionable material used is said to be critical size and its mas the critical mass.
(c)

Radius of $n^{\text {th }}$ orbit for any hydrogen like atom
$r_{n}=r_{0}\left(\frac{n^{2}}{Z}\right)\left(r_{0}=\right.$ radius of first orbit of H_{2}-atom $)$
If $r_{n}=r_{0} \Rightarrow n=\sqrt{2}$. For $B e^{+++}, Z=4 \Rightarrow n=2$
(a)

For $n=1$, maximum number of states $=2 n^{2}=2$ and for $n=2,3,4$, maximum number of states would be $8,18,32$ respectively, Hence number of possible elements
$=2+8+18+32=60$
(b)

After one α-emission, the daughter Nucleus reduces in mass number by 4 unit and in atomic number by 2 unit. In β - emission the atomic number of daughter nucleus increases by 1 unit.
The reaction can be written as
${ }_{92} \mathrm{U}^{238} \xrightarrow{-8 \alpha}{ }_{76} X^{206} \xrightarrow{-6 \beta}{ }_{82} Y^{206}$
Thus, the resulting nucleus is ${ }_{82} Y^{206}$ ie, ${ }_{82} \mathrm{~Pb}^{206}$.
(d)

In the given case, 12 days $=3$ half lives Number of atoms left after 3 half live

$$
=6.4 \times 10^{10} \times \frac{1}{2^{3}}=0.8 \times 10^{10}
$$

(d)

Radioactive decay does not depend upon the time of creation.

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	B	D	C	C	D	A	B	C	D	C	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	A	D	C	C	D	A	B	A	D	D	

