Class : XIIth
Date :
Solutions
Subject : PHYSICS
DPP No. : 4

Topic :-NUCLEI

1

4

7
(d)

Because sound waves require medium to travel through and there is no medium (air) on moon's surface
(c)

By using $v=R c\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]$
$\Rightarrow v=10^{7} \times\left(3 \times 10^{8}\right)\left[\frac{1}{4^{2}}-\frac{1}{5^{2}}\right]=6.75 \times 10^{13} \mathrm{~Hz}$
(a)

For Bracket series $\frac{1}{\lambda_{\text {max }}}=R\left[\frac{1}{4^{2}}-\frac{1}{5^{2}}\right]=\frac{9}{25 \times 16} R$
and $\frac{1}{\lambda_{\text {min }}}=R\left[\frac{1}{4^{2}}-\frac{1}{\infty^{2}}\right]=\frac{R}{16} \Rightarrow \frac{\lambda_{\text {max }}}{\lambda_{\text {min }}}=\frac{25}{9}$
(b)
$\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{t / T} \Rightarrow\left(\frac{1}{16}\right)=\left(\frac{1}{2}\right)^{2 / T} \Rightarrow\left(\frac{1}{2}\right)^{4}=\left(\frac{1}{2}\right)^{2 / T}$
$\Rightarrow T=0.5$ hour $=30$ minutes
(a)
${ }_{8} O^{18}+{ }_{1} H^{1} \rightarrow{ }_{9} F^{18}+{ }_{o} n^{1}$
(d)

In time $t=T, N=\frac{N_{0}}{2}$
In another half-life,(ie, after 2 half-lives)

$$
N=\frac{1 N_{0}}{2} \frac{N_{0}}{4}=N_{0}\left(\frac{1}{2}\right)^{2}
$$

After yet another half-life ,(ie, after 3 half-lives)
$N=\frac{1}{2}\left(\frac{N_{0}}{4}\right)=\frac{N_{0}}{8}=N_{0}\left(\frac{1}{2}\right)^{3}$ and so on. Hence, after n
half-lives

$$
\begin{aligned}
N & =N_{0}\left(\frac{1}{2}\right)^{n} \\
& =N_{0}\left(\frac{1}{2}\right)^{t / T}
\end{aligned}
$$

where $t=n \times T=$ total time of n half-lives.

Here, $\quad n=\frac{t}{T}=\frac{19}{3.8}$

$$
=5
$$

\therefore The fraction left

$$
\begin{aligned}
\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n} & =\left(\frac{1}{2}\right)^{5}=\frac{1}{32} \\
& =0.031
\end{aligned}
$$

(c)
$N=N_{0} e^{-\lambda t} \Rightarrow \ln \frac{N_{0}}{N}=\lambda t$
$t=\frac{1}{\lambda} \ln \frac{N_{0}}{N} \Rightarrow t=\frac{2.303 \times T_{1 / 2}}{0.693} \log _{10} \frac{N_{0}}{N}$
$\frac{N_{0}}{N}=10, T_{1 / 2}=10$ day $\Rightarrow t=33.23$ days
(d)

In vector form of Coulomb's law proves that the forces \mathbf{F}_{12} and \mathbf{F}_{21} are equal and opposite.
or $\quad \mathbf{F}_{21}=\mathbf{F}_{12}$

$$
\mathbf{F}_{p e}=\mathbf{F}_{e p}
$$

$$
\mathbf{F}_{p e}^{\prime}=\mathbf{F}_{e p}^{\prime}
$$

And $\quad \mathbf{F}_{p e}+\mathbf{F}_{e p}=-\mathbf{F}_{e p}^{\prime}+\mathbf{F}_{p e}^{\prime}$
So option (d) is incorrect.
(c)

Energy to excite the e^{-}from $n=1$ to $n=2$

$$
\frac{1}{\lambda}=R\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]=R\left[\frac{1}{(2)^{2}}-\frac{1}{(4)^{2}}\right] \Rightarrow \lambda=\frac{16}{3 R}
$$

First excited state $\quad n=2(-3.4 \mathrm{eV})$

$E=-3.4-(-13.6)=10.2 \mathrm{eV}=10.2 \times 1.6 \times 10^{-19}$
$=1.632 \times 10^{-18} \mathrm{~J}$
(b)

The mass excess per nucleon of isotopes of atom is known as packing fraction given by

$$
P=\frac{M-A}{A}
$$

Where M is the actual mass of isotope and A is its atomic mass.
Packing fraction is positive for isotope having very low or very high mass number and negative for all others.
(d)
$N_{1}=\frac{N_{01}}{(2)^{t / 20}}, N_{2}=\frac{N_{02}}{(2)^{t / 10}}$
$N_{1}=N_{2}$
$\frac{40}{(2)^{t / 20}}=\frac{160}{(2)^{t / 10}} \Rightarrow 2^{t / 20}=2^{\left(\frac{t}{10} 2\right)}$
$\Rightarrow \frac{t}{20}=\frac{t}{10}-2 \Rightarrow \frac{t}{20}-\frac{t}{10}=-2$
$\Rightarrow \frac{t}{20}=2 \Rightarrow t=40$
(b)

Conserving the momentum

$$
\begin{aligned}
& 0=\frac{M}{2} v_{1}-\frac{M}{2} v_{2} \\
& v_{1}=v_{2} \\
& \Delta m c^{2}=\frac{1}{2} \cdot \frac{M}{2} v_{1}^{2}+\frac{1}{2} \cdot \frac{M}{2} v_{2}^{2} \\
& \Delta m c^{2}=\frac{M}{2} v_{1}^{2} \\
& \frac{2 \Delta m c^{2}}{M}=v_{1}^{2} \\
& v_{1}=c \sqrt{\frac{2 \Delta m}{M}}
\end{aligned}
$$

(a)

The proton is the most stable in the Baryon group
(a)

Activity of substance that has 2000 disintegrations/sec

$$
=\frac{2000}{3.7 \times 10^{10}}=0.054 \times 10^{-6} c i=0.054 \mu c i
$$

The number of radioactive nuclei having activity A
$N=\frac{A}{\lambda}=\frac{2000 \times T_{1 / 2}}{\log _{e} 2}$
$=\frac{2000 \times 138.6 \times 24 \times 3600}{0.693}=3.45 \times 10^{10}$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	D	C	C	A	B	A	D	A	C	D	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	B	A	C	B	D	C	C	B	A	A	

