Class: XIIth
Date :
Solutions

Subject : PHYSICS
DPP No. : 3

Topic :-NUCLEI

1
(a)

In increasing order of penetrating powers, the radiations are,

$$
\alpha<\beta<\gamma
$$

(a)
B.E. per nucleon is maximum for $F e^{56}$. For futher detail refer theory
(c)
$N=N_{0}\left(\frac{1}{2}\right)^{n}$
$\Rightarrow \frac{1}{100} N_{0}=N_{0}\left(\frac{1}{2}\right)^{n} \Rightarrow \frac{1}{100}=\left(\frac{1}{2}\right)^{n} \Rightarrow n=\frac{2}{\log 2}$
$\Rightarrow \frac{t}{T}=\frac{2}{\log 2} \Rightarrow t=6.6 \mathrm{~T}$ year
(a)

Mass number decreases by $8 \times 4=32$
Atomic number decreases by $8 \times 2-5=11$
(a)

Activity of $S_{1}=\frac{1}{2}$ (activity of S_{2})
Or $\quad \lambda_{1} N_{1}=\frac{1}{2}\left(\lambda_{2} N_{2}\right)$
Or $\quad \frac{\lambda_{1}}{\lambda_{2}}=\frac{N_{2}}{2 N_{1}}$
Or $\quad \frac{T_{1}}{T_{2}}=\frac{2 N_{1}}{N_{2}}$
Given $\quad N_{1}=2 N_{2}$
$\therefore \quad \frac{T_{1}}{T_{2}}=4$
(a)

Since electron and positron annihilate
$\lambda=\frac{h c}{E_{\text {Total }}}=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{(0.51+0.51) \times 10^{6} \times 1.6 \times 10^{-19}}$
$=1.21 \times 10^{-12} \mathrm{~m}=0.012 \AA$
(b)

Activity $=-\frac{d N}{d t}=\lambda N=\lambda N_{0} e^{-\lambda t}$
i.e., graph between activity and t, is exponential having negative slope

Here, $\frac{N_{x_{1}}(t)}{N_{x_{2}}(t)}=\frac{1}{e}$
or $\frac{N_{0} e^{-10 \lambda t}}{N_{0} e^{-\lambda t}}=\frac{1}{e}$
(Because initially, both have the same number of nuclei, N_{0}).
or $e=\frac{e^{-\lambda t}}{e^{-10 \lambda t}}=e^{9 \lambda t}$
$9 \lambda t=1$
$t=\frac{1}{9 \lambda}$

18

19
(b)
$\lambda=\frac{0.693}{T_{1 / 2}}=\frac{0.693}{77}=9 \times 10^{-3} / d a y$
(c)

Since the ${ }_{55}^{133} C s$ has larger size among the four atoms given, thus the electrons present in the outermost orbit will be away from the nucleus and the electrostatic force experienced by electrons due to nucleus will be minimum. Therefore the energy required to liberate electron from outer will be minimum in the case of ${ }_{55}{ }^{133} \mathrm{Cs}$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	A	A	C	A	A	A	B	D	C	B		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	D	B	A	A	B	B	D	B	C	B		

