

Class : XIIth Date : Subject : PHYSICS DPP No. : 2

1. In which radioactive disintegration, neutron dissociates into proton and electron a) He^{+1} emission b) β – emission c) γ – emission d) Positron emission 2. Using the following data Mass hydrogen atom = 1.00783 u Mass of neutron = 1.00867 u Mass of nitrogen atom $(_7N^{14}) = 14.00307 \text{ u}$ The calculated value of the binding energy of the nucleus of the nitrogen atom $(_7N^{14})$ is close to a) 56 MeV b) 98 MeV c) 104 MeV d)112 MeV 3. The ionization energy of Li^{++} is equal to a) 9hcR b)6*hcR* c) 2*hcR* d) hcR 4. In a fission process, nucleus A divides into two nuclei B and C, their binding energies being E_{a} , E_b and E_c respectively. Then a) $E_b + E_c = E_a$ b) $E_b + E_c > E_a$ c) $E_b + E_c < E_a$ d) $E_b \cdot E_c = E_a$ 5. According to Bohr's model, the radius of the second orbit of helium atom is d) 0.265 Å a) 0.53 Å b) 1.06 Å c) 2.12 Å 6. An electron has a mass of $9.1 \times 10^{-31} kg$. It revolves around the nucleus in a circular orbit of radius 0.529×10^{-10} metre at a speed of 2.2×10^{6} m/s. The magnitude of its linear momentum in this motion is a) $1.1 \times 10^{-34} kg - m/sb$) $2.0 \times 10^{-24} kg - m/sc$) $4.0 \times 10^{-24} kg - m/sd$) $4.0 \times 10^{-31} kg - m/s$ 7. According to the quark model, it is possible to build all the hadrons using a) 2 quarks and 3 antiquarks b) 3 quarks and 2 antiquarks d) 2 quarks and 2 antiquarks c) 3 quarks and 3 antiquarks 8. Atomic number of a nucleus is Z and atomic mass is M. The number of neutron is a) M - Zb)*M* c) Z d)M + Z9. An electron of an atom transits from n_1 to n_2 . In which of the following maximum frequency of photon will be emitted a) $n_1 = 1$ to $n_2 = 2$ b) $n_1 = 2$ to $n_2 = 1$ c) $n_1 = 2$ to $n_2 = 6$ d) $n_1 = 6$ to $n_2 = 2$ 10. For uranium nucleus how does its mass vary with volume? d) $m \propto V^2$ c) $m \propto \sqrt{V}$ a) $m \propto V$ b) $m \propto 1/V$ 11. Which of the following isotopes is normally fissionable a) $_{92}U^{238}$ b) $_{93}Np^{239}$ c) $_{92}U^{235}$ d) $_{2}He^{4}$

12. Which one of the following statements about uranium is correct a) ^{235}U is fissionable by thermal neutrons

235u				
	b) Fast neutrons trigger the fission process in ^{235}U			
	c) ^{235}U breaks up into fragments when bombarded by slow neutrons d) ^{235}U is an unstable isotope and undergoes spontaneous fission			
	Outside a nucleus			
) Neutron is stable		b) Proton and neutron both are stable	
-	c) Neutron is unstable		d) Neither neutron nor proton is stable	
		$-X^A$ nucleus	neutron and proton respectively, then	
	$m_{n}m_{n}$ and m_{p} are the matrix m_{p} and m_{p} are the matrix m_{p}		b) $m = (A - Z)m_n + Zm_p$	
-	c) $m = (A - Z)m_p + Zm_p$		$d) m > (A - Z)m_n + Zm_p$	
-	The average binding energy per nucleon is maximum for the nucleus			
		$_{80}^{16}$	c) $_{26}Fe^{56}$	d) $_{92}He^{238}$
-	In the nuclear reaction: $X(n,\alpha) {}_{3}Li^{7}$ the term X will be			
		$(1, a) 3B^{2}$ and $(1, a) 3B^{2}$	c) $5B^{11}$	d) $_{2}He^{4}$
-) 8	-) 8	-) 8) =
	. 3.8 days is the half-life period of a sample. After how many days, the sample will become 1/8th of the original substance			
	-	o) 3.8	c) 3	d)None of these
-	The radius of nucleus is			
	a) Proportional to its mass number			
-	b) Inversely Proportional to its mass number			
	c) Proportional to the cube root of its mass number			
-)Not related to its mass			
19. Energy of an electron in n^{th} orbit of hydrogen atom is $\left(k = \frac{1}{4\pi\varepsilon_0}\right)$				
a	$-\frac{2\pi^2k^2me^4}{1}$	$\frac{4\pi^2 m k e^2}{2}$	c) $-\frac{n^2h^2}{2\pi k me^4}$	d) $-\frac{n^2h^2}{4-2l_1+2}$
u,	n^2h^2	n^2h^2	$2\pi k me^4$	$4\pi^2 k m e^2$
20. The rest energy of an electr <mark>on is</mark>				

a) 510 KeV b) 931 KeV c) 510 MeV d) 931 MeV