Class: XIIth
Date :

Solutions

Topic :-NUCLEI

1
(b)
$F=k q_{1} q_{2} / r^{2}$,i.e.,
$F=\frac{9 \times 10^{9} \times 1.6 \times 10^{-19} \times 1.6 \times 10^{-19}}{\left(2.5 \times 10^{-11}\right)^{2}}=3.7 \times 10^{-7} \mathrm{~N}$

4
(d)

Helium atom has 2 electrons. When one electron is removed, the remaining atom is hydrogen like atom, whose energy in first orbit is
$E_{1}=-(2)^{2}(13.6 \mathrm{eV})=-54.4 \mathrm{eV}$
Therefore, to remove the second electron from the atom, the additional energy of 54.4 eV is required. Hence, total energy required to remove both the electrons

$$
=24.6+54.4=79.0 \mathrm{eV}
$$

(a)

This is due to mass defect because a part of mass is used in keeping the neutrons and protons bound as α - particle
(a)

From Rutherford-Soddy law

$$
\begin{aligned}
& N=N_{0}\left(\frac{1}{2}\right)^{n} \\
& n=\frac{t}{T} \\
& \Rightarrow \quad \frac{1000}{1414}=\left(\frac{1}{2}\right)^{t / T} \\
& \Rightarrow\left(\frac{1}{2}\right)^{2}=\left(\frac{10}{12}\right)^{2} \quad \therefore 10^{6}=1.414 \times 10^{6}\left(\frac{1}{2}\right)^{t / T} \\
& \Rightarrow \quad n \quad \text { (Approximately) } \\
& \Rightarrow \quad n=\frac{t}{T}=2 \\
& \Rightarrow \quad T=\frac{10}{2}=5 \text { min }
\end{aligned}
$$

(d)

$$
\begin{aligned}
& E=\Delta m c^{2}=1 \times\left(3 \times 10^{8}\right)^{2}=9 \times 10^{16} \mathrm{~J} \\
& \Rightarrow E=\frac{9 \times 10^{16}}{1.6 \times 10^{-19}}=5.625 \times 10^{35} \mathrm{eV}=5.625 \times 10^{29} \mathrm{MeV}
\end{aligned}
$$

(c)
${ }_{85} X^{297} \rightarrow{ }_{77} Y^{281}+4\left({ }_{2} \mathrm{He}^{4}\right)$
(d)

Minimum wavelength is for highest energy
$n=1 \rightarrow n=\infty$, energy $=E_{0}$
$n=2 \rightarrow n=\infty$, energy $=E_{0} / 4$
$\square \quad n=\infty E=0$
$\square \quad n=2 E_{0} / 4$
$n=1 E_{0}$
\therefore Balmer line has 4 times the wavelength
\therefore Ratio of minimum wavelength is $1 / 4=0.25$
(d)

Activity reduces from 6000 dps to 3000 dps in 140 days. It implies that half-life of the radioactive sample is 140 days. In 280 days (or two half-lives)activity will remain $\frac{1}{4}$ th of the initial activity . Hence the initial activity of the sample is
$4 \times 6000 \mathrm{dps}=24000 \mathrm{dps}$
(b)

The working of hydrogen bomb is based upon nuclear fusion.
(a)
(i) ${ }_{16} S^{32}+{ }_{0} n^{1} \rightarrow{ }_{15} p^{32}+{ }_{1} H^{1}$
(ii) ${ }_{9} \mathrm{~F}^{19}+{ }_{1} \mathrm{H}^{1} \rightarrow{ }_{2} \mathrm{He}^{4}+{ }_{8} \mathrm{O}^{16}$
(iii) ${ }_{7} \mathrm{~N}^{14}+{ }_{0} \mathrm{n}^{1} \rightarrow_{6} \mathrm{C}^{14}+{ }_{1} \mathrm{H}^{1}$
(b)

Number of atoms remains undecayed $N=N_{0} e^{-\lambda t}$
Number of atoms decayed $=N_{0}\left(1-e^{-\lambda t}\right)$

$$
=N_{0}\left(1-e^{-\lambda \times \frac{1}{\lambda}}\right)=N_{0}\left(1-\frac{1}{e}\right)=0.63 N_{0}=63 \% \text { of } N_{0}
$$

(d)

By using $A=A_{0}\left(\frac{1}{2}\right)^{\frac{1}{T_{1 / 2}}}=\frac{A}{A_{0}}=\left(\frac{1}{2}\right)^{9 / 3}=\frac{1}{8}$
(d)

Decrease in mass number $=4$
Decreases in charge number $=2-1=1$
(c)
$T \propto n^{3}$

ANSWER-KEY											
Q.	1	2	3	4	5	6	7	8	9	10	
A.	B	B	C	D	A	A	D	D	C	D	
Q.	11	12	13	14	15	16	17	18	19	20	
A.	B	D	B	A	A	B	D	D	D	C	

