Class : XIIth
Date :

Solutions

Topic :-NUCLEI

1
(a)

Remaining amount

$$
=16 \times\left(\frac{1}{2}\right)^{32 / 2}=16 \times\left(\frac{1}{2}\right)^{16}=\left(\frac{1}{2}\right)^{12}<1 m g
$$

(a)

Half-life of a radioactive element

$$
\begin{aligned}
& T=\frac{0.693}{\lambda} \text { or } T \propto \frac{1}{\lambda} \\
& \therefore \quad \frac{\lambda_{A}}{\lambda_{B}}=\frac{T_{B}}{T_{A}}
\end{aligned}
$$

(b)
${ }_{7} \mathrm{~N}^{14}+{ }_{2} \mathrm{He}^{4} \rightarrow{ }_{8} \mathrm{O}^{17}+{ }_{1} \mathrm{H}^{1}$
(a)
$N_{t_{1}}=N_{0} e^{-\lambda t_{1}}$
$N_{t_{2}}=N_{0} e^{-\lambda t_{2}}$
$\therefore N_{t_{1}}-N_{t_{2}}=N_{0}\left(e^{-\lambda_{t 2}}-e^{-\lambda_{t 2}}\right)$
(a)

Mass defect
$\Delta m=$ Total mass of $\alpha-$ particles - mass of ${ }^{12} \mathrm{C}$ nucleus

$$
\begin{aligned}
& =3 \times 4.002603-12 \\
& =12.007809-12 \\
& =0.007809 \text { unit }
\end{aligned}
$$

8
(b)

From diagram

$E_{1}=-13.6-(-3.4)=-10.2 \mathrm{eV}$
$E_{2}=-13.6-(-1.51)=-12.09 \mathrm{eV}$
$E_{3}=-1.51-(-0.85)=-0.66 \mathrm{eV}$
$E_{4}=-3.4-(-0.85)=(-2.55) \mathrm{eV}$
E_{3} is least, i.e., frequency is lowest
(a)
$1 \mathrm{amu}($ or 1 u$)=1.6605402 \times 10^{-27} \mathrm{~kg}$

$$
=1.6 \times 10^{-24} \mathrm{~g}
$$

Moreover 1 amu is equivalent to 931 MeV
0r $1.6 \times 10^{-24} \mathrm{~g}$ is equivalent to 931 MeV
$\therefore 1 \mathrm{~g}$ is equivalent to $\frac{931}{1.6 \times 10^{-24}} \mathrm{MeV}$
and $10^{-3} \mathrm{~g}$ is equivalent to $\frac{931}{1.6 \times 10^{-24}} \times 10^{-3} \mathrm{MeV}$

$$
=5.6 \times 10^{23} \mathrm{MeV}
$$

(d)

$$
\begin{aligned}
\Delta m & =0.3 \mathrm{~g} \\
& =0.3 \times 10^{-3} \mathrm{~kg}=3 \times 10^{-4} \mathrm{~kg}
\end{aligned}
$$

Energy liberated, $E=\Delta m c^{2}$

$$
\begin{aligned}
& =3 \times 10^{-4} \times\left(3 \times 10^{8}\right)^{2} \\
& =3 \times 10^{-4} \times 9 \times 10^{16} \\
& =27 \times 10^{12} \mathrm{~J}=\frac{27 \times 10^{12}}{3.6 \times 10^{6}} \mathrm{kWh} \\
& =7.5 \times 10^{6} \mathrm{kWh}
\end{aligned}
$$

(c)
$\frac{1}{\lambda}=R\left(\frac{1}{2^{2}}-\frac{1}{4^{2}}\right)=\frac{3 R}{16} \Rightarrow \lambda=\frac{16}{3 R}=\frac{16}{3} \times 10^{-5} \mathrm{~cm}$
Frequency $n=\frac{c}{\lambda}=\frac{3 \times 10^{10}}{\frac{10}{3} \times 10^{-5}}=\frac{9}{16} \times 10^{15} \mathrm{~Hz}$
(d)
$V=(12.1-5.1)$ volt
$V_{\text {stopping }}=7 \mathrm{~V}$
(b)
${ }_{88} A^{196} \rightarrow{ }_{78} B^{164}$
Number of α - particles $=\frac{196-164}{4}=8$

$$
{ }_{88} A^{196} \xrightarrow{-8 \alpha}{ }_{72} X^{164} \rightarrow{ }_{78} B^{164}
$$

\therefore Number of $\beta-$ particles $=78-72=6$
(c)
$\frac{h c}{\lambda}=E=e V$
$\Rightarrow \lambda=\frac{h c}{e V}=\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{1.6 \times 10^{-19} \times 4.9}=2525 \AA$
(b)
$N=N_{0}\left(\frac{1}{2}\right)^{n}$
Remaining part $=N_{0}-\frac{3}{4} N_{0}$

$$
\begin{aligned}
& =\frac{1}{4} N_{0} \\
\frac{N_{0}}{4} & =N_{0}\left(\frac{1}{2}\right)^{n} \\
\left(\frac{1}{2}\right)^{2}= & \left(\frac{1}{2}\right)^{n} \\
n & =2
\end{aligned}
$$

Time $=$ Half year \times Number of half year $=3 \times 2=6$ days
(a)

The total mass of the initial particles

$$
\begin{aligned}
& m_{\mathrm{i}}=1.007825+7.016004 \\
& \quad=8.023829 \mathrm{u}
\end{aligned}
$$

and the total mass of final particles

$$
m_{f}=2 \times 4.002603=8.005206 \mathrm{u}
$$

Difference between initial and final mass of particles

$$
\begin{gathered}
\Delta m=m_{i}-m_{f}=8.023829-8.005206 \\
=0.018623 \mathrm{u}
\end{gathered}
$$

The Q-value is given by

$$
\begin{aligned}
Q & =(\Delta m) c^{2} \\
& =0.018623 \times 931.5=17.35 \mathrm{MeV}
\end{aligned}
$$

(c)

1 week $=7$ days $=7 \times 24 h r \simeq 14$ half lives
Number of atoms left $=\frac{N_{0}}{(2)^{14}}$, Activity $=N \lambda$
\therefore Activity left is $\frac{1}{(2)^{14}}$ times the initial
$\Rightarrow \frac{1}{(2)^{14}} \times 1$ curie $=\frac{1}{16384} \times 1$ curie $\cong 61 \times 10^{-6}$ curie $\approx 60 \mu$ curie
(a)

Mean life $=\frac{\text { Half life }}{0.6931}=\frac{10}{0.6931}=14.4$ hours
(a)

If R is activity of radioactive substance after n half lives,
then $R=R_{0}\left(\frac{1}{2}\right)^{n}$
$\frac{R_{0}}{16}=R_{0}\left(\frac{1}{2}\right)^{n} \therefore n=4$
$t=n T=4 \times 100=400 \mu \mathrm{~s}$
(b)

Here $T_{1 / 2}=20$ minutes, we know $\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{t / T_{1 / 2}}$
For 20% decay $\frac{N}{N_{0}}=\frac{80}{100}=\left(\frac{1}{2}\right)^{t_{1} / 20}$
For 80% decay $\frac{N}{N_{0}}=\frac{20}{100}=\left(\frac{1}{2}\right)^{t_{2} / 20}$
Dividing (ii) by (i)
$\frac{1}{4}=\left(\frac{1}{2}\right)^{\frac{\left(t_{2}-t_{1}\right)}{20}}$
On solving we get $t_{2}-t_{1}=40 \mathrm{~min}$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	A	C	A	B	A	B	A	B	A	D		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	C	D	B	C	B	A	C	A	A	B		

