

Class : XIIth Date : Subject : PHYSICS DPP No. : 9

Topic :- MOVING CHARGES AND MAGNETISM

1. Figure shows a straight wire of length *l* carrying current *i*. The magnitude of a magnetic field produced by the current at point *P* is

a) Increases b) Decreases c) Remain same d) Becomes zero

5. A small coil of *N* turns has an effective area *A* and carries a current *I*. It is suspended in a horizontal magnetic field \vec{B} such that its plane is perpendicular to \vec{B} . The work done in rotating it by 180° about the vertical axis is a) *NAIB* b) 2*NAIB* c) 2 π *NAIB* d) 4 π *NAIB* 6. A coil having *N* turns carry a current *I* as shown in the figure. The magnetic field intensity at point *P* is

7. A charged particle (charge q) is moving in a circle of radius R with uniform speed v. The associated magnetic moment μ is given by

a)
$$\frac{qvR}{2}$$
 b) qvR^2 c) $\frac{qvR^2}{2}$ d) qvR

8. Current through *ABC* and *A'B'C'* is *I*. What is the magnetic field at *P*? *BP* = *PB'* = *r* (Here *C'B' PBC* are collinear)

a)
$$B = \frac{1}{4\pi} \frac{2I}{r}$$
 b) $B = \frac{\mu_0}{4\pi} \left(\frac{2I}{r}\right)$ c) $B = \frac{\mu_0}{4\pi} \left(\frac{I}{r}\right)$ d) Zero

- 9. Two circular coils mounted parallel to each other on the same axis carry steady currents. If an observer between the coils reports that one coil is carrying a clockwise current i_1 , while the other is carrying a counter clockwise current i_2 , between the two coils, then there is
 - a) A steady repulsive force b) Zero force
 - c) A repulsive force d) A steady attractive force
- 10. The magnetic field due to a current carrying circular loop of radius 3 cm at a point on the axis at a distance of 4 cm from the centre is 54 μT. What will be its value at the centre of the loop?
 a) 250 μ T
 b) 150 μ T
 c) 125 μ T
 d) 75 μ T
 11. One *Tesla* is equal to
- a) $10^7 gauss$ b) $10^{-4} gauss$ c) $10^4 gauss$ d) $10^{-8} gauss$

12. What is the net force on the square coil

a) $25 \times 10^{-7} N$ moving towards wire

- b) $25 \times 10^{-7} N$ moving away from wire
- c) $35 \times 10^{-7} N$ moving towards wire d) 33
- d) $35 \times 10^{-7} N$ moving away from wire
- 13. If two parallel wires carry current in opposite directions
 - a) The wires attract each other b) The wires repel each other
 - c) The wires experience neither attraction nor d) The forces of attraction or repulsion do not depend on current direction
- 14. The magnetic induction at a point *P* which is at a distance 4 *cm* from a long current carrying wire is 10^{-8} *tesla*. The field of induction at a distance 12 *cm* from the same current would be a) 3.33×10^{-9} *tesla* b) 1.11×10^{-4} *tesla* c) 3×10^{-3} *tesla* d) 9×10^{-2} *tesla*
- 15. A steady electric current is flowing through a cylindrical conductor
 - a) The magnetic field in the vicinity of the conductor is zero
 - b) The electric field in the v<mark>icinit</mark>y of the conductor is non-zero
 - c) The magnetic field at the <mark>axis</mark> of the conductor is zero
 - d) The electric field at the axis of the conductor is zero
- 16. The forces existing between two parallel current carrying conductors is *F*. If the current in each conductor is doubled, then the value of force will be a) 2F b) 4F c) 5F d)F/2
- 17. A charge + Q is moving upwards vertically. It enters a magnetic field directed to north. The force on the charge will be towards
 - a) North b) South c) East d) West
- 18. The magnetic force acting on a charge particle of charge $-2\mu c$ in a magnetic field of 2T actin in y direction, when the particle velocity is $(2i + 3j) \times 10^6 m s^{-1}$ is
- a) 8 *N* in -z direction b) 8 *N* in *z* direction c) 8 *N* in *y* direction d) 8 *N* in *z* direction 19. An electric current is passed through a circuit containing two wires of the same material,
- connected in parallel. If the lengths and radii of the wires are in the ratio of 4/3 and 2/3, then the ratio of the currents passing through the wire will be
 - a) 3 b) 1/3 c) 8/9 d) 2
- 20. In which orientation the resultant magnetic moment of two magnets, will be zero, if magnetic moment of each magnets is *M* in the following figures?

