Class : XIIth
Date :
Solutions
Subject : PHYSICS
DPP No. : 8

Topic :-MOVING CHARGES AND MAGNETISM

1

2

5

6
(d)

The magnetic induction at O due to the current in portion $A B$ will be zero because O lies on $A B$ when extended
(d)

Use Right hand palm rule, or Maxwell's Cork screw rule or any other
(c)

Magnetic field on the axis of circular current
$B=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \pi n i r^{2}}{\left(x^{2}+r^{2}\right)^{3 / 2}} \Rightarrow B \propto \frac{n r^{2}}{\left(x^{2}+r^{2}\right)^{3 / 2}}$
(b)
$M=I \times$ Area of loop \hat{k}
$=I \times\left[a^{2}+\frac{\pi a^{2}}{4 \times 2} \times 4\right] \hat{k}$
$=I \times a^{2}\left[\frac{\pi}{2}+1\right] \hat{k}$
(c)

Magnetic field due to different parts are
$B_{1}=0$
$B_{2}=\frac{\mu_{0}}{4 \pi} \cdot \frac{\pi i}{r} \odot$
$B_{3}=\frac{\mu_{0}}{4 \pi} \cdot \frac{i}{r} \odot$
$\therefore B_{n e t}=B_{2}+B_{3}=\frac{\mu_{0} i}{4 r}+\frac{\mu_{0} i}{4 \pi r}$
$2 \underbrace{\longrightarrow}_{3}$
(c)

According to the question figure can be drawn as shown below

Force on the conductor $A B C=$ Force on the conductor $A C$

$$
=5 \times 10 \times\left(5 \times 10^{-2}\right)=2.5 \mathrm{~N}
$$

(a)
$B_{1}=B_{2}=B=\frac{\mu_{0}}{4 \pi} \times \frac{2 \pi i}{r}$
$B_{n e t}=\sqrt{2} B$
$\Rightarrow \frac{B}{B_{\text {net }}}=\frac{1}{\sqrt{2}}$

(d)

$$
\begin{aligned}
B_{\text {axis }} & =\frac{\mu_{0} n i R^{2}}{2\left(R^{2}+x^{2}\right)^{3 / 2}} \\
B_{\text {centre }} & =\frac{\mu_{0} n i}{2 R} \\
\text { At } x & =\sqrt{3} R, \quad B_{\text {axis }}=\frac{\mu_{0} n i R^{2}}{2\left(R^{2}+3 R^{2}\right)^{3 / 2}}=\frac{\mu_{0} n i}{16 R} \\
\therefore \frac{B_{\text {centre }}}{B_{\text {axis }}} & =\frac{8}{1}
\end{aligned}
$$

(b)

Since particle is moving undeflected
So $q E=q v B \Rightarrow B=E / v=\frac{10^{4}}{10}=10^{3} \mathrm{~Wb} / \mathrm{m}^{2}$
(d)

Along the axis of coil \vec{v} and \vec{B} are parallel, so $F=0$
(c)
$B=\frac{\mu_{0} 2 \pi i \mu_{0} 2 \pi}{4 \pi} r \frac{e}{4 \pi} r \frac{\mu_{0}}{(2 \pi r / v)}=\frac{e v}{4 \pi} r^{2}$
$=\frac{10^{-7} \times 1.6 \times 10^{-19} \times 7.5 \times 10^{+4}}{\left(5.3 \times 10^{-11}\right)^{2}}$

On solving $B=0.43 \mathrm{~Wb} \mathrm{~m}^{-2}$

20
(b)

Here, $i_{\mathrm{g}}=0.005 \mathrm{~A} ; V=500$ volt;
$R=965 \Omega, G=$?
$R=\frac{V}{i_{\mathrm{g}}}-G$
Or $G=\frac{V}{i_{\mathrm{g}}}-R=\frac{5}{0.005}-975=25 \Omega$
(b)
$B=\frac{\mu_{0}}{4 \pi} \frac{2 \pi i}{r}=10^{-7} \times \frac{2 \pi \times 2}{0.0157}=8 \times 10^{-5} \mathrm{~Wb} / \mathrm{m}^{2}$
(c)
$v=\frac{E}{B}=\frac{20}{5}=4 \mathrm{~m} / \mathrm{s}$
(a)

For first case, the wire of length L is bent to form a circular coil of one turn,

$$
L=2 \pi r_{1}
$$

Similarly for second case,

$$
L=4 \pi r_{2}
$$

Now, $2 \pi r_{1}=4 \pi r_{2}$ or $r_{2}=\frac{r_{1}}{2}$

$$
\begin{aligned}
\therefore & B_{1}=\frac{\mu_{0} I}{2 r_{1}} \\
& B_{2}=\frac{\mu_{0} I}{2 r_{2}}=\left(\frac{\mu_{0} I}{2 r_{1}}\right) \times 2 \\
& \\
& B_{2}=2 B_{1}
\end{aligned}
$$

(a)

Time period is given by $T=\frac{2 \pi m}{q B}$
\Rightarrow Frequency $v=\frac{1}{T}=\frac{q B}{2 \pi m}$
(d)

The component of velocity perpendicular to H will make the motion circular while that parallel to H will make it move along a straight line. The two together will make the motion helical
(d)
$M=i A=0.1 \times \pi \times(0.05)^{2}$
$=(0.1) \times 3.14 \times 25 \times 10^{-4}=7.85 \times 10^{-4} a m p-m^{2}$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	D	D	C	C	B	C	C	A	D	B		
D												
Q.	11	12	13	14	15	16	17	18	19	20		
A.	D	C	B	B	C	A	A	D	C	D		

