Class : XIIth Date :

Solutions

Subject : PHYSICS DPP No. : 6

Topic :- MOVING CHARGES AND MAGNETISM

2

(d) The time period of revolution of the electrion is

$$T = \frac{2\pi m}{qB} = \frac{2 \times 3.14 \times 9.0 \times 10^{-31}}{1.6 \times 10^{-19} \times 1 \times 10^{-4}}$$

 $= 3.5 \times 10^{-7} \text{ s}$

3

(a)

(b)

When a charged particle having K.E. *T* is subjected to a transverse uniform magnetic field, it describes a circular path in the magnetic field without any change in its speed. Thus, the K.E. of the charged particle remains *T* at all times

(c)

$$M = NiA \Rightarrow M \propto A \Rightarrow M \propto r^2 [As I = 2\pi r \Rightarrow l \propto r]$$

 $\Rightarrow M \propto l^2$

5

The magnetic field at the centre of circular coil is

 $B = \frac{\mu_0 i}{2r}$

Where, r = radius of circle $= \frac{l}{2\pi}$ (:: $l = 2\pi r$)

$$\therefore B = \frac{\mu_0 i}{2} \times \frac{2\pi}{l}$$
$$= \frac{\mu_0 i\pi}{l} \qquad \dots (i)$$

When wire of length l bents into a circular loops of n turns, then

$$l = n \times 2\pi r'$$

$$\Rightarrow r' = \frac{1}{n \times 2\pi}$$

Thus, new magnetic field

$$B' = \frac{\mu_0 ni}{2r'} = \frac{\mu_0 ni}{2} \times \frac{n \times 2\pi}{l}$$
$$= \frac{\mu_0 i\pi}{l} \times n^2$$
$$= n^2 B$$
[From Eq. (i)]

6

(d)

When charged particle enters perpendicularly in a magnetic field, it moves in a circular path with a constant speed. Hence it's kinetic energy also remains constant

(a)

$$r = \frac{mv}{qB} \Rightarrow \frac{e}{m} = \frac{v}{rB}$$

(b)

8

Magnitude of the magnetic moment

$$M = IA$$
 and A is the area

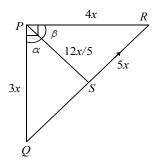
The current produced in one revolution

$$l = \frac{ev}{ev} = e\frac{2\pi}{T}$$

 $\therefore \text{ Magnetic moment } = \frac{2\pi}{T} |e|A$

As the electron is flowing in the anticlockwise direction. The current is flowing in the clockwise direction.

$$\therefore M = -\frac{2\pi}{T} |e|A$$


10

(c)

Magnetic field at *P* due to *PQ* & *PR* is zero

 \therefore Magnetic field at *P* due to *QR*

$$B = \frac{\mu_0}{4\pi} \cdot \frac{I}{PS} (\sin \alpha + \sin \beta)$$

Where, $B = \frac{\mu_0}{4\pi} \cdot \frac{1}{\frac{12x}{5}} [\frac{3}{5} + \frac{4}{5}]$
 $B = \frac{\mu_0}{4\pi} \times \frac{1}{12x} \times 7 = \frac{7\mu_0 I}{48\pi x} \quad \therefore k = 7$

11 13

(a) Using $eE = evB \Rightarrow E = vB = 5 \times 10^6 \times 0.02 = 10^5 Vm^{-1}$

(b)

Current carrying conductors will attract each other, while electron beams will repel each other

14 (c)

Force on the wire = Bil

Force per unit length $= Bi = 10^{-4} \times 10 = 10^{-3}N$

16 (c)

Net force on loop is zero

17 (b)

For charge particles, if they are moving freely in space, electrostatic force is dominant over magnetic force between them. Hence due to electric force they repel each other

$$r = \sqrt{2mE} / Bq$$
 and $r_1 = \sqrt{2m(E/2)} / Bq;$
So, $r_1 = r/\sqrt{2}$
(c)

Here, $i_{g} = \frac{1}{2}i; S = 40\Omega, G=?$ G

$$=(i-i_{\rm g})S/i_{\rm g}=\frac{(i-i_{\rm f})^2+40}{i_{\rm f}/2}=40\Omega$$

20

For wire *A*,

$$B_1 = \frac{\mu_0 i_1}{2r}$$

(a)

Where $r = \frac{40}{2\pi}$

For wire *B*,

Circumference = length

 $n\pi r = 30$

or
$$n\pi = \frac{30}{r} = \frac{30}{40/2\pi} = \frac{3}{2}\pi$$

or
$$\theta = n\pi = \frac{3}{2}\pi$$

 $\therefore \quad B_2 = \frac{\mu_0}{4\pi} \left(\frac{i_2}{r}\right) \theta$
But $B_1 = B_2$
or $\frac{\mu_0 i_1}{2r} = \frac{\mu_0}{4\pi} \left(\frac{i_2}{r}\right) \theta$ or $\frac{i_1}{i_2} = \frac{3}{4}$

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
А.	А	D	А	С	В	D	А	В	A	C
Q.	11	12	13	14	15	16	17	18	19	20
А.	А	В	В	С	C	С	В	В	C	A

