Class: XIIth
Date :
Solutions

Topic :- MOVING CHARGES AND MAGNETISM

1

2

5
(d)

Torque $\vec{\tau}=\overrightarrow{\mathrm{M}} \times \overrightarrow{\mathrm{B}} \quad$ or $\quad \tau=B M \sin \theta$, where $\overrightarrow{\mathrm{M}}$ is perpendicular to the plane of the coil. Due to this torque, the coil will orient itself so that the torque on the coil is zero. ie, $\theta=0^{0}$.It means \vec{M} is parallel to \vec{B}. So, the plane of the coil is perpendicular to this direction of magnetic field.
(d)
$B=\frac{\mu_{0}}{4 \pi} \frac{2 I}{r}$
or $B \propto \frac{1}{r}$
$\therefore \frac{B^{\prime}}{B}=\frac{r}{2 r}$
or $B^{\prime}=B \times \frac{r}{2 r}=0.4 \times \frac{1}{2}=0.2 \mathrm{~T}$
(d)

Magnetic force on straight wire

$F=B i l \sin \theta=B i l \sin 90^{\circ}=B i l$
For equilibrium of wire in mid-air,
$F=m g$
Bil $=m g$
$\therefore B=\frac{m g}{i l}=\frac{200 \times 10^{-3} \times 9.8}{2 \times 1.5}=0.65 \mathrm{~T}$
(a)
$r=\frac{\sqrt{2 m K}}{q B} \Rightarrow K \propto \frac{q^{2}}{m} \Rightarrow \frac{K_{p}}{K_{\alpha}}=\left(\frac{q_{p}}{q_{\alpha}}\right)^{2} \times \frac{m_{\alpha}}{m_{p}}$
$\Rightarrow \frac{1}{K_{\alpha}}=\left(\frac{q_{p}}{2 q_{p}}\right) \times \frac{4 m_{p}}{m_{p}}=1 \Rightarrow K_{\alpha}=1 \mathrm{MeV}$
(c)

Magnetic induction at the centre of the coil of radius r is
$B_{c}=\frac{\mu_{0} n I}{2 r}$
Magnetic induction on the axial line of a circular coil at a distance x from the centre is

$$
B_{a}=\frac{\mu_{0} n r^{2} I}{2\left(r^{2}+x^{2}\right)^{3 / 2}}
$$

Given $x=r$
$\therefore \quad B_{a}=\frac{\mu_{0} n r^{2} I}{2\left(2 r^{2}\right)^{3 / 2}}$
From Eqs. (i) and (ii), we get
$\frac{B_{c}}{B_{a}}=\frac{2 \sqrt{2}}{1}$

9

(b)

Bev $=m v^{2} / r$ or $v=B e r / m$
$=\frac{10^{-3} \times 1.6 \times 10^{-19} \times 0.01}{9.0 \times 10^{-31}}$
$=1.77 \times 10^{6} \mathrm{~ms}^{-1}$
(b)

If both electric and magnetic fields are present and perpendicular to each other and the particle is moving perpendicular to both of them with $F_{e}=F_{m}$. In this situation $\overrightarrow{\mathbf{E}} \neq 0$ and $\vec{B} \neq 0$.

But if electric field becomes zero, then only force due to magnetic field exists. Under this force, the charge moves along a circle
(d)

Magnetic force on straight wire

$$
\begin{aligned}
F= & \text { Bil } \sin \theta \\
& =\text { Bil } \sin 90^{\circ}=B i l
\end{aligned}
$$

For equilibrium of wire in mid-air,

$$
\begin{aligned}
F & =m \mathrm{~g} \\
B i l & =m \mathrm{~g} \\
\therefore B & =\frac{m \mathrm{~g}}{i l} \\
& =\frac{200 \times 10^{-3} \times 9.8}{2 \times 1.5}=0.65 \mathrm{~T}
\end{aligned}
$$

(d)

10

11
(a)
$r=\frac{m v}{B q} \quad$ or $\quad r \propto \frac{m}{q}$ for the same value of v and B.
$\therefore \quad r_{P}: r_{d}: r_{\alpha}=\frac{m_{P}}{q_{D}}: \frac{m_{d}}{q_{d}}: \frac{m_{\alpha}}{q_{\alpha}}$

$$
=\frac{m}{l}: \frac{2 m}{l}: \frac{4 m}{2 l}=1: 2: 2
$$

18
(a)
$F=\frac{\mu_{0}}{4 \pi} \frac{2 i_{1} i_{2}}{a}=10^{-7} \times \frac{2 \times 10 \times 5}{0.1}=10^{-4} N$ [Repulsive]
(b)
$B=\frac{\mu_{0}}{4 \pi} \frac{\theta i}{r}=\frac{\mu_{0}}{4 \pi} \times \frac{\pi}{2} \times \frac{i}{R}=\frac{\mu_{0} i}{8 R}$
(c) perpendicular to the paper inwards
$\therefore B=B_{1}+B_{2}=\frac{\mu_{0} i}{4 r_{1}}+\frac{\mu_{0} i}{4 r_{2}}=\frac{\mu_{0} i}{4}\left(\frac{r_{1}+r_{2}}{r_{1} r_{2}}\right) \otimes$
(c)

As, $\quad q V=\frac{1}{2} m v^{2}$
Or $\quad v=\sqrt{2 q V / m}$;
So,
(d)
$M=n i A=n i\left(\pi r^{2}\right) \Rightarrow M \propto r^{2}$
(a) move in a straight line.

The magnetic induction due to both semicircular parts will be in the same direction

If the particle enters in the magnetic field parallel to the direction of the field, then it will

For proton, $R_{p}=\frac{m v}{B q}=\frac{\sqrt{2} M_{p} E}{q_{p} B}$
Similarly for deuteron and α-particle
$R_{d}=\frac{\sqrt{2 M_{d} E}}{q_{p} B}$ and $R_{\alpha}=\frac{\sqrt{2 M_{\alpha} E}}{q_{\alpha} B}$
According to the question
$\therefore R_{p}: R_{d}: R_{\alpha}$
or $\frac{\sqrt{M_{p}}}{q_{p}}: \frac{\sqrt{M_{d}}}{q_{d}}: \frac{\sqrt{M_{\alpha}}}{q_{a}}$
$\therefore \frac{\sqrt{1}}{1}: \frac{\sqrt{2}}{1}: \frac{\sqrt{4}}{2}$ or $1: \sqrt{2}: 1$
(a)

Charged particles deflect in magnetic field
(d)
$T=\frac{2 \pi m}{q B} \Rightarrow T \alpha v^{o}$

ANSWER-KEY													
Q.	1	2	3	4	5	6	7	8	9	10			
A.	D	D	D	A	C	B	B	D	D	A			
Q.	11	12	13	14	15	16	17	18	19	20			
A.	A	B	C	C	D	A	B	B	A	D			

