Class: XIIth
Date :
Solutions
Subject : PHYSICS
DPP No. : 4

Topic :- MOVING CHARGES AND MAGNETISM

1
(a)

$$
B=\mu_{0} n i \Rightarrow i=\frac{B}{\mu_{0} n}=\frac{20 \times 10^{-3}}{4 \pi \times 10^{-7} \times 20 \times 100}
$$

$$
=7.9 \mathrm{amp}=8 \mathrm{amp}
$$

(b)
$\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \pi n i}{r} \Rightarrow B \propto n i$
(d)

The magnetic field B will be uniform inside the hollow tube, excepts near the ends. Also magnetic field is zero at any point outside the tube.
(c)

The Lorentz force acting on the current carrying conductor in the magnetic field is
$F=I B l \sin \theta$
Since, wire $P Q$ is parallel to the direction of magnetic field, then $\theta=0$,
$\therefore F_{P Q}=I B l \sin 0^{\circ}=0$
Also, wire $Q R$ is perpendicular to the direction of magnetic field, then $\theta=90^{\circ}$.
$\therefore F_{Q R}=I B l \sin 90^{\circ}=I B l$
(b)

The given wire can be replaced by a straight wire as shown below

Hence force experienced by the wire
$F=$ Bil $=5 \times 10 \times 0.1=5 \mathrm{~N}$
(c)
$B=10^{-7} \frac{2 \pi n i}{r}=10^{-7} \times \frac{2 \times \pi \times 25 \times 4}{5 \times 10^{-2}}=1.257 \times 10^{-3} T$
(b)

For a point inside the tube, using Ampere law, $\oint \overrightarrow{\mathrm{B}} . d \overrightarrow{\mathrm{I}}=\mu_{0} i$. Here, we have $i=0$ for inside the tube.
$\therefore B=0$
(d)

Due to decrease in crosses (\times), induced current in outer loop is anticlockwise, i.e., from d to c and clockwise in inner loop i.e., from $a \rightarrow b$
(a)

Magnetic field due to revolution of electron
$B=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \pi i}{r}=\frac{\mu_{0}}{4 \pi} \cdot \frac{2 \pi \cdot\left(\frac{e \omega}{2 \pi}\right)}{r}=10^{-7} \times \frac{e \omega}{r}$
$\Rightarrow 16=10^{-7} \times \frac{1.6 \times 10^{-19} \omega}{1 \times 10^{-10}} \Rightarrow \omega=10^{17} \mathrm{rad} / \mathrm{sec}$
(b)

Deflecting couple $=$ torque on the loop $=B i A \cos \theta$.
(c)

For undeviated motion $\left|\overrightarrow{F_{e}}\right|=\left|\overrightarrow{F_{m}}\right|$, which happens when \vec{v}, \vec{E} and \vec{B} are mutually perpendicular to each other
(c)
$i=30 \mathrm{~A}, B=4 \times 10^{-4} \mathrm{~T}$
$r=2 \mathrm{~cm}=2 \times 10^{-2} \mathrm{~m}$
Initial magnetic field (parallel to the wire)
$B_{1}=4 \times 10^{-4} \mathrm{~T}$
Magnetic field produced by the straight wire

$$
\begin{aligned}
B_{2} & =\frac{\mu_{0} i}{2 \pi r}=\frac{2 \times 10^{-7} \times 30}{2 \times 10^{-2}} \\
& =3 \times 10^{-4} \mathrm{~T}
\end{aligned}
$$

B_{2} will be in the plane perpendicular to the plane of wire, so
B_{1} and B_{2} are perpendicular to each other.
\therefore Resultant magnetic field

$$
\begin{aligned}
B & =\sqrt{B_{1}^{2}+B_{2}^{2}} \\
& =\sqrt{\left(4 \times 10^{-4}\right)^{2}+\left(3 \times 10^{-4}\right)^{2}}
\end{aligned}
$$

$$
=5 \times 10^{-4}
$$

(b)

Field due to a straight wire of infinite length is $\frac{\mu_{0} i}{4 \pi r}$ if the point is on a line perpendicular to its length while at the centre of a semicircular coil is $\frac{\mu_{0} \pi i}{4 \pi r}$.

$\therefore \quad B=B_{a}+B_{b}+B_{c}$
$=\frac{\mu_{0}}{4 \pi} \frac{i}{r}+\frac{\mu_{0}}{4 \pi} \frac{\pi i}{r}+\frac{\mu_{0}}{4 \pi} \frac{i}{r}$
$=\frac{\mu_{0} i}{4 \pi r}(\pi+2)$ out of the page
(a)

The effective magnetic field at O
$B=B_{P E}+B_{R S}=\frac{\mu_{0}}{4 \pi} \cdot \frac{3}{2} \frac{\pi I}{R}+\frac{\mu_{0}}{4 \pi} \cdot \frac{\pi}{2} \cdot \frac{I}{2 R}$
$\Rightarrow B=\frac{\mu_{0} I}{4 R}\left[\frac{3}{2}+\frac{1}{4}\right]=\frac{7}{16} \frac{\mu_{0} I}{R}$
As per Fleming's Right Hand rule, direction of magnetic field is perpendicular and in the plane of paper
(a)

When connected in parallel the current will be in the same direction and when connected in series the current will be in the opposite direction

(b)

Magnetic field at 0 due to
Part (1) : $B_{1}=0$
Part (2) : $B_{2}=\frac{\mu_{0}}{4 \pi} \cdot \frac{\pi i}{(a / 2)} \otimes \quad$ [along $-Z$-axis]
Part (3) : $B_{3}=\frac{\mu_{0}}{4 \pi} \cdot \frac{i}{(a / 2)}(\downarrow) \quad[$ along $-Y$-axis $]$
Part (4) : $B_{4}=\frac{\mu_{0}}{4 \pi} \cdot \frac{\pi i}{(3 a / 2)} \odot \quad[$ along $+Z$-axis $]$
Part (5) : $B_{5}=\frac{\mu_{0}}{4 \pi} \cdot \frac{i}{(3 a / 2)}(\downarrow) \quad$ [along $-Y$-axis]
$B_{2}-B_{4}=\frac{\mu_{0}}{4 \pi} \cdot \frac{\pi i}{a}\left(2-\frac{2}{3}\right)=\frac{\mu_{0} i}{3 a} \otimes \quad$ [along $-Z$-axis]
$B_{3}+B_{5}=\frac{\mu_{0}}{4 \pi} \cdot \frac{1}{a} \cdot\left(2+\frac{2}{3}\right)=\frac{8 \mu_{0} i}{12 \pi a}(\downarrow) \quad$ [along $-Y$-axis]
Hence net magnetic field
$B_{n e t}=\sqrt{\left(B_{2}-B_{4}\right)^{2}+\left(B_{3}+B_{5}\right)^{2}}$
$\frac{\mu_{0} i}{3 \pi a} \sqrt{\pi^{2}+4}$
(b)

As shown figure take an element $d l$ at C of wire, where $O C=l$. Let $P C=r$ and $\angle O P C=\phi$. According to Biot Savarts law; magnitude of magnetic field induction at P due to current element at C is

$d B=\frac{\mu_{0}}{4 \pi} \frac{i d l \sin \theta}{r^{2}}$
Here, $\theta=90^{\circ}+\phi ; \mathrm{r}=\operatorname{asec} \phi$
And $\quad l=a \tan \phi ; d l=a \sec ^{2} \phi d \phi$

$$
\begin{aligned}
& \therefore d B=\frac{\mu_{0}}{4 \pi} \frac{i\left(\sec ^{2} \phi d \phi\right) \sin \left(90^{\circ}+\phi\right)}{a^{2} \sec ^{2} \phi} \\
& =\frac{\mu_{0}}{4 \pi} \frac{1}{a} \cos \phi d \phi
\end{aligned}
$$

Total magnetic field induction at P is

$$
\begin{aligned}
& B=\int_{\phi_{1}} 90^{\circ} \frac{\mu_{0}}{4 \pi} \frac{1}{a} \cos \phi d \phi=\frac{\mu_{0}}{4 \pi} \frac{1}{a}(\sin \phi)_{\phi 1}^{90 。} \\
& =\frac{\mu_{0} 1}{4 \pi a}\left(1-\sin \phi_{1}\right)=\frac{\mu_{0} 1}{4 \pi a}\left(1-\frac{b}{\sqrt{a^{2}+b^{2}}}\right)
\end{aligned}
$$

(a)

The magnetic field in between because of each will be in opposite direction
$B_{\text {in between }}=\frac{\mu_{0} i}{2 \pi x} \hat{\mathbf{j}}-\frac{\mu_{0} i}{2 \pi(2 d-x)}(-\hat{\mathbf{j}})$

$$
=\frac{\mu_{0} i}{2 \pi}\left[\frac{1}{x}-\frac{1}{2 d-x}\right](\hat{\mathbf{j}})
$$

At $x=d, B_{\text {in between }}=0$
For $x<d, B_{\text {in between }}=(\hat{\mathbf{j}})$
For $x>d, B_{\text {in between }}=(-\hat{\mathbf{j}})$
Towards x, net magnetic field will add up and direction will be $(-\hat{\mathbf{j}})$.
Towards x^{\prime}, net magnetic field will add up and direction will be ($-\hat{\mathbf{j}}$).
(c)

Magnetic force on the rod $=B I l$
Weight of the rod $=m g$
For no tension in wire, $B I l=m g$
or $I=\frac{m g}{B l}=\frac{1 \times 10}{2 \times 1}=5 \mathrm{~A}$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	A	B	D	C	B	C	B	D	A	D		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	B	C	C	B	A	A	B	B	A	C		

