

Class : XIIth

Date :

Subject : PHYSICS

DPP No. : 2

Topic:-MOVING CHARGES AND MAGNETISM

1.	An electron is travelling along the <i>x</i> -direction. It encounters a magnetic field in the <i>y</i> -direction.	
	Its subsequent motion will be	
	a) Straight line along the x -direction	b) A circle in the xz-plane

- c) A circle in the *yz*-plane
 d) A circle in the *xy*-plane
 A thin disc having radius *r* and charge *q* distributed uniformly over the disc is rotated *n* rotations per second about its axis. The magnetic field at the centre of the disc is
 - a) $\frac{\mu_0 qn}{2r}$ b) $\frac{\mu_0 qn}{r}$ c) $\frac{\mu_0 qn}{4r}$ d) $\frac{3\mu_0 qn}{4r}$
- 3. The figure shows the cross-section of a long cylindrical conductor of radius *a* carrying a uniformly distributed current *i*. The magnetic field due to current at *P* is

- 4. Force acting on a magnetic pole of 7.5×10^{-2} A-m is 1.5 N. Magnetic field at the point is a) 20 Wbm⁻² b) 50 Wbm⁻² c) 112.5 T d) 2.0 T
- 5. The direction of magnetic lines of forces close to a straight conductor carrying current will be a) Along the length of the conductor b) Radially outward
 - a) Along the length of the conductor b) Radially outward c) Circular in a plane perpendicular to the d) Helical
- conductor

 6. If a proton, deuteron and α -particle on being accelerated by the same potential difference enters perpendicular to the magnetic field, then the ratio of their kinetic energies is
- enters perpendicular to the magnetic field, then the ratio of their kinetic energies is a) 1:2:2 b) 2:2:1 c) 1:2:1 d) 1:1:2
- 7. The strength of the magnetic field at a point r near a long straight current carrying wire is B. The field at a distance $\frac{r}{2}$ will be
 - a) $\frac{B}{2}$ b) $\frac{B}{4}$ c) 2B

d) $\mu_0 i a^2 / (\pi r^2)$

8. A charge particle of mass m and charge q enters a region of uniform magnetic field **B** perpendicular of its velocity v. The particle initially at rest was accelerated by a potential difference *V* (volts) before it entered the region of magnetic field. What is the diameter of the circular path followed by the charged particle in the region of magnetic field?

a)
$$\frac{2}{B} \sqrt{\frac{mV}{q}}$$

b)
$$\frac{2}{B} \sqrt{\frac{2mV}{q}}$$
 c) $B \sqrt{\frac{2mV}{q}}$

c)
$$B \sqrt{\frac{2mV}{g}}$$

$$d)\frac{B}{q}\sqrt{\frac{2mV}{B}}$$

- 9. Positively charged particles are projected into a magnetic field. If the direction of the magnetic field is along the direction of motion of the charge particles, the particles get
 - a) Accelerated

b) Decelerated

c) Deflected

d) No changed in velocity

- 10. Toroid is
 - a) Ring shaped closed solenoid
- b) Rectangular shaped solenoid

c) Ring shaped open solenoid

- d) Square shaped solenoid
- 11. A long solenoid has 800 turns per metre length of solenoid. A current of 1.6 A flows through it. The magnetic induction at the end of the solenoid on its axis is

a)
$$16 \times 10^{-4} \, \text{T}$$

b)
$$8 \times 10^{-4} \, \text{T}$$

c)
$$32 \times 10^{-4} \, \text{T}$$

d)
$$4 \times 10^{-4} \, \text{T}$$

12. PQ and RS are long parallel conductors separated by certain distance. M is the mid-point between them (see the figure). The net magnetic field at M is B. Now, the current 2 A is switched off. The field at *M* now becomes

a) 2*B*

b) B

d)3B

13. A wire shown in figure carries a current of 40 A. If r = 3.14 cm, the magnetic field at point P will be

a) 1.6×10^{-3} T

b) $3.2 \times 10^{-2} \,\mathrm{T}$ c) $4.8 \times 10^{-3} \,\mathrm{T}$ d) $6.0 \times 10^{-4} \,\mathrm{T}$

- 14. Two long parallel wires P and Q are both perpendicular to the plane of the paper with distance 5 m between them. If P and Q carry current of 2.5 amp and 5 amp respectively in the same direction, then the magnetic field at a point half way between the wires is
 - a) $\frac{\sqrt{3}\mu_0}{2\pi}$
- b) $\frac{\mu_0}{\pi}$

c) $\frac{3\mu_0}{2\pi}$

- d) $\frac{\mu_0}{2\pi}$
- 15. The magnetic force on a charged particle moving in the field does not work, because
 - a) Kinetic energy of the charged particle does not change
 - b) The charge of the particle remains same
 - c) The magnetic force is parallel to velocity of the particle
 - d) The magnetic force is parallel to magnetic field
- 16. An infinitely long straight conductor AB is fixed and a current is passed through it. Another movable straight wire CD of finite length and carrying current is held perpendicular to it and released. Neglect weight of the wire

- a) The rod *CD* will move upwards parallel to itself
- b) The rod *CD* will move downward parallel to itself
- c) The rod *CD* will move upward and turn clockwise at the same time
- d) The rod *CD* will move upward and turn anti-clockwise at the same time
- 17. A wire of length 2 m carrying a current of 1 A is bent to form a circle, the magnetic moment of the coil is
 - a) 2π Am²
- b) $\frac{1}{\pi}$ Am²
- c) π Am²
- d) $\frac{2}{\pi}$ Am²
- 18. A current flows in a conductor from east to west. The direction of the magnetic field at a point above the conductor is
 - a) Towards east
- b) Towards west
- c) Towards north
- d) Towards south
- 19. A particle having a mass of 10^{-2} kg carries a charge of 5×10^{-8} C. The particle is given an initial horizontal velocity of 10^5 ms^{-1} in the presence of electric field \vec{E} and magnetic field \vec{B} . To keep the particle moving in a horizontal direction, it is necessary that
 - (1) \vec{B} should be perpendicular to the direction of velocity and \vec{E} should be along the direction of velocity
 - (2) Both \vec{B} and \vec{E} should be along the direction of velocity
 - (3) Both \vec{B} and \vec{E} are mutually perpendicular and perpendicular to the direction of velocity
 - (4) \vec{B} should be along the direction of velocity and \vec{E} should be perpendicular to the direction of velocity

Which of the following pairs of statements is possible

- a) (1) and (3)
- b) (3) and (4)
- c) (2) and (3)
- d)(2) and (4)

20. Current *I* is flowing in conductor shaped as shown in the figure. The radius of the curved part is r and the length of straight portion is very large. The value of the magnetic field at the centre θ will be

- a) $\frac{\mu_0 I}{4\pi r} \left(\frac{3\pi}{2} + 1\right)$ b) $\frac{\mu_0 I}{4\pi r} \left(\frac{3\pi}{2} 1\right)$ c) $\frac{\mu_0 I}{4\pi r} \left(\frac{\pi}{2} + 1\right)$ d) $\frac{\mu_0 I}{4\pi r} \left(\frac{\pi}{2} 1\right)$

