

$$rac{i}{\pi a^2}$$
 , $\pi r^2 = rac{i}{a^2} r^2$

Ampere's law $\oint \mathbf{B.dl} = \mu_0 i'$ gives

$$B.2\pi r = \frac{\mu_0 i r^2}{a^2}$$

or
$$B = \frac{\mu_0 i r}{2\pi a^2}$$

4

(a)

$$B = \frac{F}{m} = \frac{1.5}{7.5 \times 10^{-2}} = 20 \text{ T or } 20 \text{ Wbm}^{-2}$$

5

(c)

See the following figure

6

Kinetic energy in magnetic field remains constant and it is $K = q V \Rightarrow K \propto q [V = \text{ constant}]$ $\therefore K_p:K_d:K_\alpha = q_p:q_d:q_\alpha = 1:1:2$

(c)

$$B \propto \frac{1}{r} \Rightarrow \frac{B_1}{B_2} = \frac{r_2}{r_1} \Rightarrow \frac{B}{B_2} = \frac{r/2}{r} \Rightarrow B_2 = 2B$$

(d)

$$Bqv = \frac{mv^2}{r} \Rightarrow r = \frac{mv}{Bq}$$
 ...(i)

Since particle was initially at rest and gained a velocity v due to a potential difference of V volt. So,

KE of particle
$$=\frac{1}{2}mv^2 = qV$$

 $v = \sqrt{\frac{2qV}{m}}$...(ii)

From Eqs. (i) and (ii), we get

$$r = \frac{m}{Bq} \sqrt{\frac{2qV}{m}}$$

$$r = \frac{1}{B} \sqrt{\frac{2mV}{q}}$$

∴ Diameter of the circular path

$$d = 2r = \frac{2}{B} \sqrt{\frac{2mV}{q}}$$

9

(d)

(a)

The direction of magnetic field is along the direction of motion of the charge particles, so angle will be 0° .

 $\therefore \text{ Force } F = qvB \sin \theta$ $= qvB \sin \theta$ $= 0 \qquad (:: \sin \theta = 0)$

So, there will be no change in the velocity.

10

11

12

Toroid is ring shaped closed solenoid.

($\therefore B_{PQ}$ and B_{RS} are in opposite directions)

$$=\frac{4 \mu_0}{4 \mu_0} - \frac{2 \mu_0}{4 \mu_0} = \frac{2 \mu_0}{4 \mu_0}$$

 $4\pi d$ $4\pi d$ $4\pi d$ $4\pi d$ When the current 2 A is switched off, the net magnetic field at *M* is due to current 1 A

$$B' = \frac{\mu_0 \times 2 \times 1}{4\pi d} = B$$

(d)

Let the given circular ABC part of wire subtends an angle θ at its centre. Then, magnetic field due to this circular part is

$$B' = B_c \times \frac{\theta}{2\pi} = \frac{\mu_0}{4\pi} \times \frac{2\pi i}{e} \times \frac{\theta}{2\pi}$$

$$B' = \frac{\mu_0}{4\pi} \cdot \frac{i}{r} \theta$$

$$B' = \frac{\mu_0}{4\pi} \cdot \frac{i}{r} \theta$$
Given, $i = 40$ A, $r = 3.14$ cm $= 3.14 \times 10^{-2}$ m
 $\theta = 360^\circ - 90^\circ = 270^\circ = \frac{3\pi}{2}$ rad.
 $10^{-7} \times 40 = 3\pi$

$$\therefore B' = \frac{10^{-7} \times 40}{3.14 \times 10^{-2}} \times \frac{3\pi}{2}$$
$$B' = 6 \times 10^{-4} \,\mathrm{T}$$

(d)

In the following figure magnetic field at mid point *M* is given by

$$P = Q$$

$$2.5A = 5$$

$$M = 5$$

$$B_{net} = B_Q - B_P$$

$$= \frac{\mu_0}{4\pi} \cdot \frac{2}{r} (i_Q - i_P)$$

$$= \frac{\mu_0}{4\pi} \times \frac{2}{2.5} (5 - 2.5) = \frac{\mu_0}{2\pi}$$
(c)

16

Since the force on the rod *CD* is non-uniform it will experience force and torque. From the left hand side it can be seen that the force will be upward and torque is clockwise

17

(b) Circumference = length of the wire $2\pi r = L$ $r = \frac{L}{2\pi}$ $r = \frac{1}{\pi}$ ($\because L = 2 \text{ m}$) Magnetic moment M = nIA $= 1 \times 1 \times \pi \left[\frac{1}{\pi}\right]^2$

$$= 1 \times 1 \times \pi \left[\frac{1}{\pi}\right]$$
$$= \frac{1}{\pi} \operatorname{Am}^{2}$$

18

(c)

According to Maxwell's right hand screw rule, the direction of magnetic field at a point above the conductor is towards north and at a point above the conductor is towards north and at a point below the conductor is towards south.

ANSWER-KEY										
Q.	1	2	3	4	5	6	7	8	9	10
A.	В	В	A	A	С	D	C	D	D	A
Q.	11	12	13	14	15	16	17	18	19	20
A.	В	В	D	D	А	C	В	С	C	A

