Class: XIIth
Date :
Solutions
Subject : PHYSICS
DPP No. : 2

Topic :- MOVING CHARGES AND MAGNETISM

1
(b)
$\vec{F}=-e(\vec{v} \times \vec{B}) \Rightarrow \vec{F}=-e[v \hat{i} \times B \hat{j}]=e v B[-\hat{k}]$
i.e. Force on electron is acting towards negative z-axis. Hence particle will move in a circle in $x z$-plane

(b)

Consider a hypothetical ring of radius x and thickness $k x$ of a disc as shown in figure.

Charge on the ring, $d q=\frac{q}{\pi r^{2}} \times(2 \pi x d x)$
Current due to rotation of charge on ring is

$$
d i=\frac{d q}{T}=\frac{d q}{1 / n}=n d q=\frac{n q 2 x d x}{r^{2}}
$$

Magnetic field at the centre O due to current of ring element is
$d B=\frac{\mu_{0} d i}{2 x}=\frac{\mu_{0} n q 2 x d x}{r^{2}(2 x)}=\frac{\mu_{0} n q d x}{r^{2}}$
Total magnetic field induction due to current of whole disc is

$$
B=\int_{0}^{r} d x=\frac{\mu_{0} n q}{r^{2}}(x)_{0}^{2}=\frac{\mu_{0} n q}{r} .
$$

(a)

The current enclosed with in the circle
$\frac{i}{\pi a^{2}}, \pi r^{2}=\frac{i}{a^{2}} r^{2}$
Ampere's law $\oint \mathbf{B} . \mathbf{d l}=\mu_{0} i^{\prime}$ gives
$B .2 \pi r=\frac{\mu_{0} i r^{2}}{a^{2}}$
or $\quad B=\frac{\mu_{0} i r}{2 \pi a^{2}}$

8
(d)
$B q v=\frac{m v^{2}}{r} \Rightarrow r=\frac{m v}{B q}$
Since particle was initially at rest and gained a velocity v due to a potential difference of V volt. So,

KE of particle $=\frac{1}{2} m v^{2}=q V$
$v=\sqrt{\frac{2 q V}{m}}$
From Eqs. (i) and (ii), we get
$r=\frac{m}{B q} \sqrt{\frac{2 q V}{m}}$
$r=\frac{1}{B} \sqrt{\frac{2 m V}{q}}$
\therefore Diameter of the circular path
$d=2 r=\frac{2}{B} \sqrt{\frac{2 m V}{q}}$
(d)

The direction of magnetic field is along the direction of motion of the charge particles, so angle will be 0°.
\therefore Force $F=q v B \sin \theta$

$$
\begin{aligned}
& =q v B \sin \theta \\
& =0
\end{aligned} \quad(\because \sin \theta=0)
$$

So, there will be no change in the velocity.
(a)

Toroid is ring shaped closed solenoid.

(b)
$B=\frac{\mu_{0} n i}{2}=\frac{\left(4 \pi \times 10^{-7}\right) \times 800 \times 1.6}{2}=8 \times 10^{-4} \mathrm{~T}$.
(b)

Magnetic field at mid-point M in first case is $B=B_{P Q}-B_{R S}$
($\therefore B_{P Q}$ and $B_{R S}$ are in opposite directions)
$=\frac{4 \mu_{0}}{4 \pi d}-\frac{2 \mu_{0}}{4 \pi d}=\frac{2 \mu_{0}}{4 \pi d}$
When the current 2 A is switched off, the net magnetic field at M is due to current 1 A
$B^{\prime}=\frac{\mu_{0} \times 2 \times 1}{4 \pi d}=B$
(d)

Let the given circular $A B C$ part of wire subtends an angle θ at its centre. Then, magnetic field due to this circular part is

Given, $i=40 \mathrm{~A}, r=3.14 \mathrm{~cm}=3.14 \times 10^{-2} \mathrm{~m}$

$$
\begin{aligned}
\theta & =360^{\circ}-90^{\circ}=270^{\circ}=\frac{3 \pi}{2} \mathrm{rad} . \\
\therefore B^{\prime} & =\frac{10^{-7} \times 40}{3.14 \times 10^{-2}} \times \frac{3 \pi}{2} \\
B^{\prime} & =6 \times 10^{-4} \mathrm{~T}
\end{aligned}
$$

(d)

In the following figure magnetic field at mid point M is given by

(c)

Since the force on the rod $C D$ is non-uniform it will experience force and torque. From the left hand side it can be seen that the force will be upward and torque is clockwise

20
(b)

Circumference $=$ length of the wire

$$
\begin{aligned}
2 \pi r & =L \\
r & =\frac{L}{2 \pi} \\
r & =\frac{1}{\pi} \quad(\because L=2 \mathrm{~m})
\end{aligned}
$$

Magnetic moment $M=n I A$

$$
\begin{aligned}
& =1 \times 1 \times \pi\left[\frac{1}{\pi}\right]^{2} \\
& =\frac{1}{\pi} \mathrm{Am}^{2}
\end{aligned}
$$

(c)

According to Maxwell's right hand screw rule, the direction of magnetic field at a point above the conductor is towards north and at a point above the conductor is towards north and at a point below the conductor is towards south.

(a)
$B_{A}=0$

$B_{B}=\frac{\mu_{0}}{4 \pi} \frac{(2 \pi-\pi / 2) I}{r} \otimes=\frac{\mu_{0}}{4 \pi} \frac{3 \pi I}{2 r}$
$B_{C}=\frac{\mu_{0} I}{4 \pi r} \otimes$
So, net magnetic field at the centre
$=B_{A}+B_{B}+B_{C} \quad=0+\frac{\mu_{0} 3 \pi I}{4 \pi} 2 r+\frac{\mu_{0} I}{4 \pi r}=\frac{\mu_{0} I}{4 \pi r}\left(\frac{3 \pi}{2}+1\right)$

ANSWER-KEY												
Q.	1	2	3	4	5	6	7	8	9	10		
A.	B	B	A	A	C	D	C	D	D	A		
Q.	11	12	13	14	15	16	17	18	19	20		
A.	B	B	D	D	A	C	B	C	C	A		

